Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mealworm Rearing and Experimental Design
2.1.1. Experiment 1—Effect of Temperature
2.1.2. Experiment 2—Effect of EPA/DHA-Enriched Diet
2.2. Determination of Moisture Content
2.3. Determination of Carbohydrate Content
2.4. Determination of Crude Protein Content
2.5. Determination of Crude Fat Content
2.6. Gut Microbiome Analysis
2.7. Statistical Analysis
3. Results
3.1. Effect of Temperature on the Growth of T. molitor Larvae
3.2. Effect of Dietary Supplementation with ω-3 PUFA on the Nutritional Value of T. molitor Larvae
3.3. Effect of ω-3 PUFA Supplementation on the Gut Microbial Community of T. molitor Larvae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
T. molitor | Tenebrio molitor |
KFDA | Korean Food and Drug Administration |
EFSA | European Food Safety Authority |
ω-3 PUFAs | Omega-3 polyunsaturated fatty acids |
ALA | α-linolenic acid |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
KO | Krill oils |
ASVs | Amplicon sequence variants |
LDA | Linear discriminant analysis |
LEfSe | Linear discriminant analysis effect size |
ANOVA | Analysis of variance |
PCoA | Principal co-ordinates analysis |
References
- Olivadese, M.; Dindo, M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects 2023, 14, 690. [Google Scholar] [CrossRef]
- Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Mohamed, S.F.; Kassie, M.; Subramanian, S.; Onditi, J.; et al. The global atlas of edible insects: Analysis of diversity and commonality contributing to food systems and sustainability. Sci. Rep. 2024, 14, 5045. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. Efsa J. 2021, 19, e06343. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of UV-treated powder of whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. Efsa J. 2023, 21, e08009. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Bohn, T.; Cámara, M.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Jos, Á.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; et al. Safety of frozen and dried forms of whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. Efsa J. 2025, 23, e9155. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Weaver, M.C.; Choi, M.-K. Proximate composition and mineral content of five edible insects consumed in Korea. CyTA J. Food 2017, 15, 143–146. [Google Scholar] [CrossRef]
- Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of Partial Substitution of Flour with Mealworm (Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods 2022, 11, 2156. [Google Scholar] [CrossRef]
- Draszanowska, A.; Kurp, L.; Starowicz, M.; Paszczyk, B.; Czarnowska-Kujawska, M.; Olszewska, M.A. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024, 13, 3166. [Google Scholar] [CrossRef]
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of Healthy Snacks Incorporating Meal from Tenebrio molitor and Alphitobius diaperinus Using 3D Printing Technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef]
- Grau, T.; Vilcinskas, A.; Joop, G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z. Für Naturforschung C J. Biosci. 2017, 72, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pineda, M.; Juan, T.; Antoniewska-Krzeska, A.; Vercet, A.; Abenoza, M.; Yagüe-Ruiz, C.; Rutkowska, J. Exploring the Potential of Yellow Mealworm (Tenebrio molitor) Oil as a Nutraceutical Ingredient. Foods 2024, 13, 3867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, H.X.; Li, W.J.; Qiao, F.; Zhang, W.B.; Du, Z.Y.; Zhang, M.L. Partial replacement of soybean meal by yellow mealworm (Tenebrio molitor) meal influences the flesh quality of Nile tilapia (Oreochromis niloticus). Anim. Nutr. 2023, 12, 108–115. [Google Scholar] [CrossRef]
- Xu, M.; Li, R.; Li, M.; Duan, C.; Wei, Y.; Ni, X.; Wang, X.; Fu, S.; Yu, R. Tenebrio molitor powder enhances gelation properties of Penaeus vannamei myofibrillar protein: Mechanistic insights into structural optimization and digestibility. Food Chem. 2025, 490, 145065. [Google Scholar] [CrossRef] [PubMed]
- Ormiston, K.; Melink, Z.; Andridge, R.; Lustberg, M.; Courtney DeVries, A.; Murphy, K.; Emmers, K.; Ziouzenkova, O.; Belury, M.A.; Orchard, T.S. Dietary EPA and DHA enrichment of a high fat diet during doxorubicin-based chemotherapy attenuated neuroinflammatory gene expression in the brain of C57bl/6 ovariectomized mice. Brain Behav. Immun. 2025, 123, 370–382. [Google Scholar] [CrossRef]
- Velasque, M.; Branchini, G.; Catarina, A.V.; Bettoni, L.; Fernandes, R.S.; Da Silva, A.F.; Dorneles, G.P.; da Silva, I.M.; Santos, M.A.; Sumienski, J.; et al. Fish Oil—Omega-3 Exerts Protective Effect in Oxidative Stress and Liver Dysfunctions Resulting from Experimental Sepsis. J. Clin. Exp. Hepatol. 2023, 13, 64–74. [Google Scholar] [CrossRef]
- von Schacky, C. Importance of EPA and DHA Blood Levels in Brain Structure and Function. Nutrients 2021, 13, 1074. [Google Scholar] [CrossRef]
- Picou, F.; Debeissat, C.; Bourgeais, J.; Gallay, N.; Ferrié, E.; Foucault, A.; Ravalet, N.; Maciejewski, A.; Vallet, N.; Ducrocq, E.; et al. n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol. Res. 2018, 136, 45–55. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Pros and Cons of Long-Chain Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Health. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 383–406. [Google Scholar] [CrossRef]
- Devassy, J.G.; Leng, S.; Gabbs, M.; Monirujjaman, M.; Aukema, H.M. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. Adv. Nutr. 2016, 7, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hu, M.; Huang, J.; Yu, S.; Li, X.; Li, Y.; Mao, L. Anti-obesity effects of DHA and EPA in high fat-induced insulin resistant mice. Food Funct. 2021, 12, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Schneider, I.; Meyer, H.; Neubronner, J.; von Schacky, C.; Hahn, A. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations--a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Kępińska-Pacelik, J.; Biel, W.; Podsiadło, C.; Tokarczyk, G.; Biernacka, P.; Bienkiewicz, G. Nutritional Value of Banded Cricket and Mealworm Larvae. Foods 2023, 12, 4174. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef]
- Romero-Lorente, M.; Fabrikov, D.; Montes, J.; Morote, E.; Barroso, F.G.; Vargas-García, M.D.C.; Varga, Á.T.; Sánchez-Muros, M.J. Pre-Treatment of Fish By-Products to Optimize Feeding of Tenebrio molitor L. Larvae. Insects 2022, 13, 125. [Google Scholar] [CrossRef]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A.; et al. Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio molitor L.) Larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef]
- Peng, B.Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.M.; Zhang, Y. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 2020, 145, 106106. [Google Scholar] [CrossRef]
- Zafeiriadis, S.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G. Beyond carrots: Evaluation of gelling agents as wet feeds for Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae. Chemosphere 2024, 363, 142783. [Google Scholar] [CrossRef]
- Punzo, F.; Mutchmor, J.A. Effects of Temperature, Relative Humidity and Period of Exposure on the Survival Capacity of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Kans. Entomol. Soc. 1980, 53, 260–270. [Google Scholar]
- Eberle, S.; Schaden, L.M.; Tintner, J.; Stauffer, C.; Schebeck, M. Effect of Temperature and Photoperiod on Development, Survival, and Growth Rate of Mealworms, Tenebrio molitor. Insects 2022, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Kopecká, A.; Kouřimská, L.; Škvorová, P.; Kurečka, M.; Kulma, M. Effect of Temperature on the Nutritional Quality and Growth Parameters of Yellow Mealworm (Tenebrio molitor L.): A Preliminary Study. Appl. Sci. 2024, 14, 2610. [Google Scholar] [CrossRef]
- Bjørge, J.D.; Overgaard, J.; Malte, H.; Gianotten, N.; Heckmann, L.H. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol. 2018, 107, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lv, W.; Zhao, Y.; Huang, W.; Yuan, Q.; Yang, H.; Wang, A.; Zhou, W.; Li, M. Effects of Substituting Tenebrio molitor and Elodea nuttallii as Feed on Growth, Flesh Quality and Intestinal Microbiota of Red Swamp Crayfish (Procambarus clarkii). Foods 2024, 13, 2292. [Google Scholar] [CrossRef] [PubMed]
- El-Desouky, F.F.; Ibrahim, M.A.; Abd El-Razek, I.M.; El-Nabawy, E.M.; Amer, A.A.; Zaineldin, A.I.; Gewaily, M.S.; Dawood, M.A.O. Improving Yellow Mealworm (Tenebrio molitor) Utilization with Sodium Butyrate in Nile Tilapia Diets: Effects on Growth Performance, Intestinal Histology, Antioxidative Response, and Blood Biomarkers. Aquac. Nutr. 2024, 2024, 2442308. [Google Scholar] [CrossRef]
- Habte-Tsion, H.M.; Hawkyard, M.; Sealey, W.M.; Bradshaw, D.; Meesala, K.M.; Bouchard, D.A. Effects of Fishmeal Substitution with Mealworm Meals (Tenebrio molitor and Alphitobius diaperinus) on the Growth, Physiobiochemical Response, Digesta Microbiome, and Immune Genes Expression of Atlantic Salmon (Salmo salar). Aquac. Nutr. 2024, 2024, 6618117. [Google Scholar] [CrossRef]
- Riaz, K.; Iqbal, T.; Khan, S.; Usman, A.; Al-Ghamdi, M.S.; Shami, A.; El Hadi Mohamed, R.A.; Almadiy, A.A.; Al Galil, F.M.A.; Alfuhaid, N.A.; et al. Growth Optimization and Rearing of Mealworm (Tenebrio molitor L.) as a Sustainable Food Source. Foods 2023, 12, 1891. [Google Scholar] [CrossRef] [PubMed]
- Anusha, S.; Negi, P.S. Tenebrio molitor (Mealworm) protein as a sustainable dietary strategy to improve health span in D-galactose-induced aged mice. Int. J. Biol. Macromol. 2024, 281, 136610. [Google Scholar] [CrossRef]
- Oh, E.; Kang, Y.; Cho, I.; Koh, J.; Park, W.J.; Kim, Y. Anti-inflammatory and anti-hyperglycemia effects of mealworm (Tenebrio molitor larvae) protein extracted by four methods: Alkali, salt, enzyme, and screw press. J. Food Sci. 2024, 89, 5280–5292. [Google Scholar] [CrossRef]
- Kang, Y.; Applegate, C.C.; He, F.; Oba, P.M.; Vieson, M.D.; Sánchez-Sánchez, L.; Swanson, K.S. Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice. J. Nutr. 2023, 153, 2237–2248. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Lu, H.; Tan, H.; Sun, N.; Wang, K.; He, R.; Luo, L.; Ma, H.; Li, Z. Caspase 3-mediated cytotoxicity of mealworm larvae (Tenebrio molitor) oil extract against human hepatocellular carcinoma and colorectal adenocarcinoma. J. Ethnopharmacol. 2020, 250, 112438. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, E.Y.; Chung, K.J.; Lee, J.H.; Choi, H.J.; Chung, T.W.; Kim, K.J. Mealworm Oil (MWO) Enhances Wound Healing Potential through the Activation of Fibroblast and Endothelial Cells. Molecules 2021, 26, 779. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Abotaleb, A.O.; Zinhoum, R.A. Evaluation of various diets for improved growth, reproductive and nutritional value of the yellow mealworm, Tenebrio molitor L. Sci. Rep. 2025, 15, 15656. [Google Scholar] [CrossRef]
- Lawal, K.G.; Kavle, R.R.; Akanbi, T.O.; Mirosa, M.; Agyei, D. Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods 2021, 3, 100016. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef]
- Jing, T.Z.; Qi, F.H.; Wang, Z.Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Y.; Lu, B.; Liu, Q.; Yang, S.S.; Liu, B.; Ren, N.; Wu, W.M.; Xing, D. Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. J. Hazard. Mater. 2021, 416, 126222. [Google Scholar] [CrossRef]
- Mamtimin, T.; Han, H.; Khan, A.; Feng, P.; Zhang, Q.; Ma, X.; Fang, Y.; Liu, P.; Kulshrestha, S.; Shigaki, T.; et al. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. Microbiome 2023, 11, 98. [Google Scholar] [CrossRef]
- Ding, M.Q.; Yang, S.S.; Ding, J.; Zhang, Z.R.; Zhao, Y.L.; Dai, W.; Sun, H.J.; Zhao, L.; Xing, D.; Ren, N.; et al. Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio larvae with Crop Residues as Co-Diets. Environ. Sci. Technol. 2023, 57, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Heo, A.; Park, Y.W.; Kim, Y.J.; Koh, H.; Park, W. Gut microbiota of Tenebrio molitor and their response to environmental change. J. Microbiol. Biotechnol. 2014, 24, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Fan, X.; Yu, C.; Feng, L.; Yi, L. An Insight into Diversity and Functionalities of Gut Microbiota in Insects. Curr. Microbiol. 2020, 77, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Tavaria, F.K.; Dahl, S.; Carballo, F.J.; Malcata, F.X. Amino acid catabolism and generation of volatiles by lactic acid bacteria. J. Dairy Sci. 2002, 85, 2462–2470. [Google Scholar] [CrossRef]
- Qian, L.; Wang, Y.; Deng, P.; Zhang, J.; Qin, Y.; Li, Z.; Liao, H.; Chen, F. Enterococcus casseliflavus regulates amino acid metabolism in edible insect Clanis bilineata tsingtauica: A functional metagenomics study. Front. Microbiol. 2024, 15, 1343265. [Google Scholar] [CrossRef]
- Luo, X.; Fang, G.; Chen, K.; Song, Y.; Lu, T.; Tomberlin, J.K.; Zhan, S.; Huang, Y. A gut commensal bacterium promotes black soldier fly larval growth and development partly via modulation of intestinal protein metabolism. Mbio 2023, 14, e0117423. [Google Scholar] [CrossRef]
- Gao, B.; Ao, Y.; Zhao, Z.; Wang, Z.; Yang, C.; Cai, M.; Yu, C. Characteristics and biological mechanism of protein degradation by the black solider fly (Hermetia illucens L.) larvae gut strain Bacillus subtilis S4. Food Chem. 2025, 464, 141791. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhou, L.; Gao, T.; Zhao, Y.; Liu, S.; Su, Q.; Wei, C.; Yang, Y.; Long, Y. Bacillus cereus (EG-Q3) in the Gut of Ectropis grisescens Contributes to Host Response to Starvation Conditions. Front. Microbiol. 2022, 13, 785415. [Google Scholar] [CrossRef] [PubMed]
- Awuoche, E.O.; Smallenberger, G.; Bruzzese, D.L.; Orfano, A.; Weiss, B.L.; Aksoy, S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. PLoS Pathog. 2025, 21, e1012692. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Cao, Q.; Liu, C.; Qin, Y.; Wang, T.; Wang, C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. J. Environ. Manag. 2024, 370, 123046. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.J.; Soh, J.R.; Yu, J.J.; Sohn, H.S.; Cha, Y.S.; Oh, S.H. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from Kimchi on differentiating adipocyte. J. Appl. Microbiol. 2012, 113, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; You, Y.; Tian, Y.; Sun, H.; Li, X.; Wang, X.; Wang, Y.; Liu, J. Pediococcus pentosaceus PP04 Ameliorates High-Fat Diet-Induced Hyperlipidemia by Regulating Lipid Metabolism in C57BL/6N Mice. J. Agric. Food Chem. 2020, 68, 15154–15163. [Google Scholar] [CrossRef]
- Hao, Y.; Mei, J.; Ling, D.; Zhang, Z.; Li, S.; Gong, Z.; Liu, X.; Xu, M.; Lin, Y.; Yu, R. Improving stability and UV protection properties of phycocyanin nanoparticle-based Pickering emulgels via amorphous cationic starch complexation. Carbohydr. Polym. 2025, 369, 124314. [Google Scholar] [CrossRef]
- Brandon, A.M.; Gao, S.H.; Tian, R.; Ning, D.; Yang, S.S.; Zhou, J.; Wu, W.M.; Criddle, C.S. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environ. Sci. Technol. 2018, 52, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, J.; Lu, K.; Wang, Z.; Yin, L.; Zheng, H.; Wang, X.; Mao, L.; Xing, B. Biodegradation of Graphene Oxide by Insects (Tenebrio molitor Larvae): Role of the Gut Microbiome and Enzymes. Environ. Sci. Technol. 2022, 56, 16737–16747. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Li, J.; Meng, E.; Jin, W.; Han, W. Responses of physiological, microbiome and lipid metabolism to lignocellulose wastes in gut of yellow mealworm (Tenebrio molitor). Bioresour. Techno.l 2024, 401, 130731. [Google Scholar] [CrossRef]
- Yang, S.S.; Ding, M.Q.; Zhang, Z.R.; Ding, J.; Bai, S.W.; Cao, G.L.; Zhao, L.; Pang, J.W.; Xing, D.F.; Ren, N.Q.; et al. Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Sci. Total Environ. 2021, 789, 147915. [Google Scholar] [CrossRef]
- He, L.; Yang, S.S.; Ding, J.; He, Z.L.; Pang, J.W.; Xing, D.F.; Zhao, L.; Zheng, H.S.; Ren, N.Q.; Wu, W.M. Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. J. Hazard. Mater. 2023, 457, 131759. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Berggreen, I.E.; Tedeschi, F.; Ntrallou, K.; Gika, H.; Corredig, M. Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules 2021, 26, 7568. [Google Scholar] [CrossRef]
- Egwim, E.; Kabiru, A.; Tola, A. Partial characterization of lignin peroxidase expressed by bacterial and fungal isolates from termite gut. Biokem. Int. J. Niger. Soc. Exp. Biol. 2015, 27, 33–38. [Google Scholar]
Component | Con | EE | ED | TG | KO |
---|---|---|---|---|---|
Protein (%DM) | 15.63 ± 0.43 | 12.43 ± 0.66 ns | 13.89 ± 1.80 ns | 12.88 ± 0.56 ns | 13.16 ± 1.10 ns |
Fat (%DM) | 4.08 ± 0.29 | 13.33 ± 0.86 **** | 13.99 ± 1.07 **** | 13.34 ± 1.61 **** | 13.15 ± 0.57 **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Ye, Y.; Liu, Q.; Xu, J.; Li, R.; Xu, M.; Wang, X.; Fu, S.; Yu, R. Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae. Insects 2025, 16, 970. https://doi.org/10.3390/insects16090970
Yang A, Ye Y, Liu Q, Xu J, Li R, Xu M, Wang X, Fu S, Yu R. Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae. Insects. 2025; 16(9):970. https://doi.org/10.3390/insects16090970
Chicago/Turabian StyleYang, Aifen, Yiting Ye, Qiwei Liu, Jingjing Xu, Ruixi Li, Mingfeng Xu, Xiu Wang, Sida Fu, and Rongrong Yu. 2025. "Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae" Insects 16, no. 9: 970. https://doi.org/10.3390/insects16090970
APA StyleYang, A., Ye, Y., Liu, Q., Xu, J., Li, R., Xu, M., Wang, X., Fu, S., & Yu, R. (2025). Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae. Insects, 16(9), 970. https://doi.org/10.3390/insects16090970