Functional Response, Interference, and Predation Efficiency of Diomus guilavoguii (Coleoptera: Coccinellidae) on Paracoccus marginatus (Hemiptera: Pseudococcidae)
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Paracoccus marginatus
2.2. Diomus guilavoguii
2.3. Functional Response
2.4. Mutual Interference
2.5. Analysis of Data
3. Results
3.1. Predation Rate of Diomus guilavoguii Feeding on Paracoccus marginatus
3.2. Functional Response of D. guilavoguii Feeding on P. marginatus
3.3. Search Effects of D. guilavoguii Feeding on P. marginatus
3.4. Mutual Interference of D. guilavoguii Feeding on P. marginatus
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, D.R.; Williams, D.J.; Hamon, A.B. Notes on a new mealybug (Hemiptera: Coccoidea: Pseudococcidae) pest in Florida and the Caribbean: The papaya mealybug, Paracoccus marginatus Williams and Granara de Willink. Insecta Mundi 1999, 13, 179–181. [Google Scholar]
- Zhao, Q.; Li, H.; Chen, C.; Fan, S.; Wei, J.; Cai, B.; Zhang, H. Potential global distribution of Paracoccus marginatus, under climate change conditions, using MaxEnt. Insects 2024, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.Z.; He, R.R.; Wu, M.T.; Gu, Y.J.; Ren, J.M.; Liang, F.; Li, H.L.; Hu, X.N.; Qiu, B.L.; Mannion, C.M.; et al. First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in China and genetic record for its recent invasion in Asia and Africa. Fla. Entomol. 2015, 98, 1157–1162. [Google Scholar] [CrossRef]
- Heya, H.M.; Khamis, F.M.; Onyambu, G.K.; Akutse, K.S.; Mohamed, S.A.; Kimathi, E.K.; Ombura, F.L.O.; Ekesi, S.; Dubois, T.; Subramanian, S.; et al. Characterization and risk assessment of the invasive papaya mealybug, Paracoccus marginatus, in Kenya under changing climate. J. Appl. Entomol. 2020, 144, 442–458. [Google Scholar] [CrossRef]
- Chuai, H.Y.; Shi, M.Z.; Li, J.Y.; Zheng, L.Z.; Fu, J.W. Fitness of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), after transferring from Solanum tuberosum to Carica papaya, Ipomoea batatas, and Alternanthera philoxeroides. Insects 2022, 13, 804. [Google Scholar] [CrossRef]
- Mendel, Z.; Watson, G.W.; Protasov, A.; Spodek, M. First record of the papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Coccomorpha: Pseudococcidae), in the Western Palaearctic. EPPO Bull. 2016, 46, 580–582. [Google Scholar] [CrossRef]
- Mwanauta, R.W.; Ndakidemi, P.A.; Venkataramana, P.B. Biopesticide efficacy of four plant essential oils against papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae). Heliyon 2023, 9, e14162. [Google Scholar] [CrossRef]
- Lu, H.; Tang, J.H.; Lu, B.Q.; Lu, F.P.; He, X.; Chen, Q. Risk analysis of Paracoccus marginatus in China. China Plant Prot. 2020, 40, 73–75. [Google Scholar]
- Song, Z.J.; Zhao, Q.Y.; Ma, C.; Chen, R.R.; Ma, T.B.; Li, Z.H.; Guo, P.Z. Quarantine disinfestation of papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) using Gamma and X-rays irradiation. Insects 2023, 14, 682. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, X.Q.; Liang, X.; Liu, Y.; Wu, C.L.; Xu, X.L.; Wu, Y.; Chen, Q.; Yao, X.W.; Qiao, Y.; et al. Resistant cassava cultivars inhibit the papaya mealybug Paracoccus marginatus population based on their interaction: From physiological and biochemical perspectives. J. Pest Sci. 2023, 96, 555–572. [Google Scholar] [CrossRef]
- Laneesha, M.; Suroshe, S.S.; Babasaheb, B.F.; Shankarganesh, K. Papaya mealybug (Paracoccus marginatus) (Hemiptera: Pseudococcidae): A new threat to agri-horticulture ecosystem. Indian J. Agric. Sci. 2020, 90, 455–462. [Google Scholar] [CrossRef]
- Yang, S.Y.; Zhang, R.; Zhang, H.; Wang, H.G.; Wang, H.X.; Chen, Y.H. Synergistic effect of five spray adjuvants on spirodiclofen 240 g/L suspension concentrate and pyridaben 15% emulsifiable concentrate for thecontrol of Paracoccus marginatus. Chin. J. Pestic. Sci. 2019, 21, 531–537. Available online: http://nyxxb.alljournal.cn (accessed on 24 May 2025).
- Zhang, R.; Yang, S.Y.; Mao, X.X.; Lin, S.Y.; Wang, W.J.; Zhang, Z.X.; Cheng, D.M. Toxicities and synergism of different pesticides against Paracoccus marginatus. J. Environ. Entomol. 2020, 42, 221–226. Available online: http://hjkcxb.alljournals.net (accessed on 24 May 2025).
- Li, J.Y.; Chen, Y.T.; Wang, Q.Y.; Zheng, L.Z.; Fu, J.W.; Shi, M.Z. Sublethal and transgenerational toxicities of chlorfenapyr on biological traits and enzyme activities of Paracoccus marginatus (Hemiptera: Pseudococcidae). Insects 2022, 13, 874. [Google Scholar] [CrossRef]
- Sakthivel, P.; Karuppuchamy, P.; Kalyanasundaram, M.; Srinivasan, T. Toxicity of insecticides to papaya mealybug parasitoid, Acerophagus papayae (Noyes and Schauff) (Hymenoptera: Encyrtidae). J. Biol. Control 2012, 26, 274–278. [Google Scholar]
- Muniappan, R.; Meyerdirk, D.E.; Sengebau, F.M.; Berringer, D.D.; Reddy, G.V.P. Classical biological control of the papaya mealybug Paracocus marginatus (Hemiptera: Pseudococidae) in the Republic of Palau. Fla. Entomol. 2006, 89, 212–217. [Google Scholar] [CrossRef]
- Amarasekare, K.G.; Mannion, C.M.; Epsky, N.D. Efficiency and establishment of three introduced parasitoids of the mealybug Paracocus marginatus (Hemiptera: Pseudococcidae). Biol. Control 2009, 51, 91–95. [Google Scholar] [CrossRef]
- Myrick, S.; Norton, G.W.; Selvaraj, K.N.; Natarajan, K.; Muniappan, R. Economic impact of classical biological control of papaya mealybug in India. Crop Prot. 2014, 56, 82–86. [Google Scholar] [CrossRef]
- Hartmann, L.; Grandgirard, J.; Germain, J.F.; Hostachy, B.; Wong, M. First report of the papaya mealybug, Paracoccus marginatus (Coccomorpha: Pseudococcidae), in Tahiti, French Polynesia. EPPO Bull. 2021, 51, 229–232. [Google Scholar] [CrossRef]
- Le, K.H.; Tran, T.H.D.; Tran, D.H.; Nguyen, T.D.; Van Doan, C. Parasitoid wasp Acerophagus papayae: A promising solution for the control of papaya mealybug Paracoccus marginatus in cassava fields in Vietnam. Insects 2023, 14, 528. [Google Scholar] [CrossRef]
- Duan, J.C. Study on Artificial Rearing Technology of Propylaea quatuordecimpunctata and Evaluation of Its Pest Control Function. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2022. [Google Scholar]
- Xia, B.C.; Zhang, Y.; Shen, B.Y. Biology of Chilocorus kuwanae and its field applications. Chin. J. Biol. Control. 1986, 2, 70–74. [Google Scholar]
- Li, D.C.; Fu, Z.L.; Liu, J.Q.; Zhang, W.Y.; Yang, J. Investigation and study on the types and occurrence patterns of Matsucoccus sinensis and its natural enemies in the southern region of Gansu Province. J. Gansu Agric. Univ. 2024, 59, 180–187. [Google Scholar]
- Kairo, M.T.K.; Paraiso, O.; Gautam, R.D.; Peterkin, D.D. Cryptolaemus montrouzieri (Mulsant) (Coccinellidae: Scymninae): A review of biology, ecology, and use in biological control with particular reference to potential impact on non-target organisms. CAB Rev. 2013, 8, 1–20. [Google Scholar] [CrossRef]
- Rostami, E.; Huang, D.L.; Shi, M.Z.; Zheng, L.Z.; Li, J.Y.; Madadi, H.; Fu, J.W. Functional response and predation rate of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) to Paracoccus marginatus (Hemiptera: Pseudococcidae) at different temperatures. J. Econ. Entomol. 2024, 117, 1406–1417. [Google Scholar] [CrossRef]
- Gordon, R.D. South American Coccinellidae (Coleoptera), Part VI: A systematic revision of the South American Diomini, new tribe (Scymninae). Ann. Zool. 1999, 49 (Suppl. 1), 1–219. [Google Scholar]
- Duverger, C. Un Scymninae africain de Guinée Conakry Diomus guilavoguii n. sp. (Coleoptera Coccinellidae) récolté sur Manihot esculenta Cralntz. Bull. Soc. Linn. Bordx. 1994, 22, 121–125. [Google Scholar]
- Zhuang, J.; Huo, L.Z.; Tang, M.J.; Xie, X.F.; Chen, X.S. First report of Diomus guilavoguii Duverger, 1994 (Coleoptera, Coccinellidae, Diomini) predating on papaya mealybug Paracoccus marginatus from China. Biodivers. Data J. 2023, 11, e113291. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, D.W.; Paterson, R.A.; Bovy, H.C.; Barrios-O’Neill, D. Frair: An R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 2017, 8, 1528–1534. [Google Scholar] [CrossRef]
- Juliano, S.A. Nonlinear curve fitting: Predation and functional response curves. In Design and Analysis of Ecological Experiments; Scheiner, S.M., Gurevitch, J., Eds.; Oxford University Press: New York, NY, USA, 2001; pp. 178–196. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Rogers, D. Random search and insect population models. J. Anim. Ecol. 1972, 41, 369–383. [Google Scholar] [CrossRef]
- Holling, C.S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Kopp, M.; Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 2002, 72, 95–112. [Google Scholar] [CrossRef]
- Trexler, J.C.; McCulloch, C.E.; Travis, J. How can the functional reponse best be determined? Oecologia 1988, 76, 206–214. [Google Scholar] [CrossRef]
- Hassell, M.P. The Dynamics of Arthropod Predator-Prey Systems; Princeton University Press: Princeton, NJ, USA, 1978. [Google Scholar]
- Yu, W.; Liu, J. Predation and control of Harmonia axyridis against Tinocallis kahawaluokalani. J. Zhejiang For. Sci. Technol. 2019, 39, 55–59. [Google Scholar] [CrossRef]
- Hassell, M.P.; Varley, G.C. New inductive population model for insect parasites and its bearing on biological control. Nature 1969, 223, 1133–1137. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, J.; Haseeb, M.; Yan, S.; Kanga, L.; Zhang, R. Functional responses and intraspecifc competition in the ladybird Harmonia axyridis (Coleoptera: Coccinellidae) provided with Melanaphis sacchari (Homoptera: Aphididae) as prey. Eur. J. Entomol. 2018, 115, 232–241. [Google Scholar] [CrossRef]
- Islam, Y.; Shah, F.M.; Güncan, A.; DeLong, J.P.; Zhou, X. Functional response of Harmonia axyridis to the larvae of Spodoptera litura: The combined effect of temperatures and prey instars. Front. Plant Sci. 2022, 13, 849574. [Google Scholar] [CrossRef]
- De Oliveira, S.J.; Nascimento, V.F.; De Lacerda, L.B.; De Souza, J.M.; Ramalho, D.G.; Izidro, Y.E.; De Bortoli, S.A. Predator-prey interaction between Xylocoris sordidus (Hemiptera: Anthocoridae) and Enneothrips enigmaticus (Thysanoptera: Thripidae). Neotrop. Entomol. 2024, 53, 391–399. [Google Scholar] [CrossRef]
- Liao, J.H.; He, H.F.; Zhang, J. Study on the predatory functional response of Arma chinensis (Fallou) to Henosepilachna vigintioctopunctata (Fabricius). J. Biosaf. 2024, 33, 177–181. [Google Scholar]
- Shi, L.L.; Li, Z.Y.; Lin, M.D.; Lu, Y.Y.; Chen, K.W. Predatory capability of Mallada basalis (Neuroptera: Chrysopidae) larvae on the eggs and early instar larvae of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2022, 65, 1324–1333. [Google Scholar]
- Li, C.; Yu, J.; Mao, R.; Kang, K.; Xu, L.; Wu, M. Functional and Numerical Responses of Harmonia axyridis (Coleoptera: Coccinellidae) to Rhopalosiphum nymphaeae (Hemiptera: Aphididae) and Their Potential for Biological Control. Insects 2024, 15, 633. [Google Scholar] [CrossRef]
- Qiu, H.Y.; Fu, B.L.; Ma, X.T.; Li, M.J.; Xun, T.; Tang, L.D.; Liu, K. Functional response and searching efficiency of Orius tantillus against Thrips hawaiiensis. Plant Prot. 2020, 46, 84–89. [Google Scholar]
- Obrycki, J.J.; Kring, T.J. Predaceous Coccinellidae in Biological Control. Annu. Rev. Entomol. 1998, 43, 295–321. [Google Scholar] [CrossRef]
- van Lenteren, J.C. The State of Commercial Augmentative Biological Control: Plenty of Natural Enemies, but a Frustrating Lack of Uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Mahzoum, A.M.; Villa, M.; Benhadi-Marín, J.; Pereira, J.A. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) larvae on Saissetia oleae (Olivier) (Hemiptera: Coccidae): Implications for biological control. Agronomy 2020, 10, 1511. [Google Scholar] [CrossRef]
- Lester, P.J.; Harmsen, R. Functional and numerical responses do not always indicate the most effective predator for biological control: An analysis of two predators in a two-prey system. J. Appl. Ecol. 2002, 39, 455–468. [Google Scholar] [CrossRef]
- Benhadi-Marín, J.; Pereira, J.A.; Sousa, J.P.; Santos, S.A.P. Functional responses of three guilds of spiders: Comparing single- and multiprey approaches. Ann. Appl. Biol. 2019, 175, 202–214. [Google Scholar] [CrossRef]
Female Adult of D. guilavoguii | Male Adult of D. guilavoguii | 4th Instar Larvae of D. guilavoguii | 3rd Instar Larvae of D. guilavoguii | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate |
80 | 53.4 ± 3.709 f | 0.67 ± 0.046 a | 80 | 39.2 ± 3.967 d | 0.49 ± 0.05 a | 10 | 5.80 ± 0.583 c | 0.58 ± 0.058 a | 10 | 3.20 ± 0.374 f | 0.32 ± 0.037 ab |
120 | 60.6 ± 2.581 ef | 0.51 ± 0.022 b | 120 | 46.4 ± 5.819 d | 0.39 ± 0.048 ab | 20 | 11.80 ± 1.319 cd | 0.59 ± 0.066 a | 20 | 10.00 ± 1.140 ef | 0.50 ± 0.057 a |
160 | 75.8 ± 5.044 ef | 0.47 ± 0.032 b | 160 | 49.6 ± 5.758 d | 0.31 ± 0.036 b | 30 | 16.20 ± 2.437 cd | 0.54 ± 0.081 a | 30 | 12.6 ± 1.364 def | 0.42 ± 0.045 ab |
200 | 80.2 ± 7.419 e | 0.4 ± 0.037 b | 200 | 67 ± 6.427 cd | 0.34 ± 0.032 b | 40 | 17.00 ± 4.159 bcd | 0.43 ± 0.104 a | 40 | 19.2 ± 1.356 cde | 0.48 ± 0.034 ab |
240 | 115.2 ± 3.184 d | 0.48 ± 0.013 b | 240 | 68.4 ± 3.501 cd | 0.29 ± 0.015 b | 50 | 26.60 ± 3.172 abc | 0.53 ± 0.063 a | 50 | 22.4 ± 2.731 abcd | 0.45 ± 0.055 ab |
280 | 130.6 ± 5.278 cd | 0.47 ± 0.019 b | 280 | 84 ± 4.764 bc | 0.3 ± 0.017 b | 60 | 26.80 ± 4.188 abc | 0.45 ± 0.07 a | 60 | 17.6 ± 1.6 de | 0.29 ± 0.027 b |
320 | 143.2 ± 1.772 c | 0.45 ± 0.006 b | 320 | 113.4 ± 3.919 ab | 0.35 ± 0.012 ab | 70 | 27.00 ± 7.099 abc | 0.39 ± 0.101 a | 70 | 20.8 ± 3.231 bcde | 0.3 ± 0.046 b |
360 | 147.6 ± 5.946 ab | 0.41 ± 0.017 b | 360 | 127 ± 12.763 a | 0.35 ± 0.035 ab | 80 | 34.60 ± 5.297 ab | 0.43 ± 0.066 a | 80 | 30.4 ± 2.6 abc | 0.38 ± 0.033 ab |
400 | 168 ± 7.543 a | 0.42 ± 0.019 b | 400 | 117 ± 4.626 a | 0.29 ± 0.012 b | 90 | 35.80 ± 2.634 a | 0.40 ± 0.029 a | 90 | 29.80 ± 3.652 ab | 0.33 ± 0.041 ab |
440 | 172 ± 5.822 a | 0.39 ± 0.013 b | 440 | 126 ± 8.509 a | 0.29 ± 0.019 b | 100 | 36.40 ± 2.502 a | 0.36 ± 0.025 a | 100 | 32.20 ± 3.007 a | 0.32 ± 0.300 ab |
Female Adult of D. guilavoguii | Male Adult of D. guilavoguii | 4th Instar Larvae of D. guilavoguii | 3rd Instar Larvae of D. guilavoguii | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate | Prey Density | Predation | Predation Rate |
1 | 0.60 ± 0.245 c | 0.60 ± 0.245 a | 1 | 0.80 ± 0.200 b | 0.80 ± 0.200 ab | 1 | 1.00 ± 0.000 e | 1.00 ± 0.000 a | 1 | 1.00 ± 0.000 g | 1.00 ± 0.000 a |
3 | 1.60 ± 0.400 bc | 0.53 ± 0.133 a | 3 | 2.60 ± 0.245 b | 0.87 ± 0.0802 a | 3 | 2.20 ± 0.200 de | 0.73 ± 0.067 b | 3 | 1.40 ± 0.245 fg | 0.47 ± 0.082 b |
5 | 3.00 ± 0.316 ab | 0.60 ± 0.063 a | 5 | 3.00 ± 0.000 b | 0.60 ± 0.000 abc | 5 | 3.80 ± 0.374 c | 0.76 ± 0.0375 b | 5 | 1.80 ± 0.374 efg | 0.36 ± 0.075 b |
7 | 3.00 ± 0.316 ab | 0.43 ± 0.045 a | 7 | 3.40 ± 0.245 a | 0.49 ± 0.035 bcd | 7 | 3.40 ± 0.245 cd | 0.49 ± 0.035 c | 7 | 2.20 ± 0.374 defg | 0.31 ± 0.053 b |
9 | 3.40 ± 0.245 ab | 0.38 ± 0.027 a | 9 | 3.20 ± 0.374 a | 0.36 ± 0.042 cd | 9 | 4.20 ± 0.663 c | 0.47 ± 0.074 c | 9 | 3.00 ± 0.000 cdef | 0.33 ± 0.00 b |
11 | 3.20 ± 0.583 ab | 0.29 ± 0.053 a | 11 | 3.00 ± 0.316 a | 0.27 ± 0.029 cd | 11 | 4.40 ± 0.400 bc | 0.4 ± 0.036 c | 11 | 3.20 ± 0.374 bcde | 0.29 ± 0.034 b |
13 | 3.40 ± 0.510 ab | 0.26 ± 0.039 a | 13 | 3.60 ± 0.400 a | 0.28 ± 0.031 cd | 13 | 6.20 ± 0.374 a | 0.48 ± 0.029 c | 13 | 3.60 ± 0.400 bcd | 0.28 ± 0.031 b |
15 | 3.20 ± 0.374 ab | 0.21 ± 0.025 a | 15 | 3.40 ± 0.510 a | 0.23 ± 0.034 d | 15 | 5.80 ± 0.200 ab | 0.39 ± 0.013 c | 15 | 4.00 ± 0.316 abc | 0.27 ± 0.021 b |
17 | 3.40 ± 0.510 ab | 0.20 ± 0.030 a | 17 | 3.40 ± 0.400 a | 0.20 ± 0.024 d | 17 | 6.40 ± 0.245 a | 0.38 ± 0.014 c | 17 | 4.80 ± 0.374 ab | 0.28 ± 0.022 b |
19 | 4.80 ± 0.860 a | 0.25 ± 0.045 a | 19 | 4.20 ± 0.735 a | 0.22 ± 0.039 d | 19 | 6.40 ± 0.245 a | 0.34 ± 0.013 c | 19 | 5.40 ± 0.600 a | 0.28 ± 0.032 b |
Predator | Prey | Maximum Likelihood Estimate (±SE) | p-Value | Z-Value | Functional Response Type |
---|---|---|---|---|---|
Female adult of D. guilavoguii | 3 to 4 instar | −0.0970 ± 0.0210 | <0.001 | −4.6194 | Type II |
1 to 2 instar | −0.0016 ± 0.0002 | <0.001 | −9.028 | Type II | |
Male adult of D. guilavoguii | 3 to 4 instar | −0.1337 ± 0.0216 | <0.001 | −6.1933 | Type II |
1 to 2 instar | −0.0010 ± 0.0002 | <0.001 | −5.6392 | Type II | |
4th instar larvae of D. guilavoguii | 3 to 4 instar | −0.0707 ± 0.0196 | <0.001 | −3.6091 | Type II |
1 to 2 instar | −0.0098 ± 0.0024 | <0.001 | −4.0538 | Type II | |
3rd instar larvae of D. guilavoguii | 3 to 4 instar | −0.0453 ± 0.0204 | <0.05 | −2.2146 | Type II |
1 to 2 instar | −0.0083 ± 0.0025 | <0.001 | −3.292 | Type II |
Predator | Prey | Instantaneous Attack Rate a | Handling Time Th (h) | Theoretical Daily Maximum Predation T/Th | ||
---|---|---|---|---|---|---|
Maximum Likelihood Estimate (±SE) | 95% Confidence Interval | Maximum Likelihood Estimate (±SE) | 95% Confidence Interval | |||
Female adult | Late-instar nymphs and adults | 1.4124 ± 0.4794 ab | 0.809~2.826 | 0.2128 ± 0.0338 ab | 0.135~0.264 | 4.699 |
Young nymphs | 0.8655 ± 0.0411 a | 0.724~1.070 | 0.0024 ± 0.0002 a | 0.002~0.003 | 416.667 | |
Male adult | Late-instar nymphs and adults | 3.4485 ± 1.3382 a | 11.549~20.670 | 0.2548 ± 0.0257 a | 0.203~0.295 | 3.925 |
Young nymphs | 0.5181 ± 0.0285 b | 0.417~0.693 | 0.0025 ± 0.0004 a | 0.001~0.004 | 400.000 | |
4th instar larvae | Late-instar nymphs and adults | 1.3898 ± 0.3920 ac | 1.023~2.047 | 0.1140 ± 0.0247 c | 0.090~0141 | 8.772 |
Young nymphs | 0.9610 ± 0.0955 a | 0.693~1.328 | 0.0140 ± 0.0020 b | 0.008~0.021 | 71.428 | |
3rd instar larvae | Late-instar nymphs and adults | 0.7280 ± 0.2442 bc | 0.450~1.457 | 0.1320 ± 0.0481 bc | 0.053~0.209 | 7.576 |
Young nymphs | 0.6792 ± 0.0726 a | 0.545~0.922 | 0.0140 ± 0.0029 b | 0.006~0.022 | 71.428 |
Predator | Intraspecific Interference Equation | Search Constant (Q) | Interference Coefficient (m) | Predator Density | Prey Density | Prey Killed by per Predator | Predation Rate | Intensity of Scramble Competition (I) |
---|---|---|---|---|---|---|---|---|
Female adult | E = 0.2523P−0.802 | 0.2523 | 0.802 | 1 | 30 | 7.60 | 0.2533 | 0.0000 |
2 | 30 | 4.40 | 0.1467 | 0.4211 | ||||
3 | 30 | 3.20 | 0.1067 | 0.5789 | ||||
4 | 30 | 2.55 | 0.0850 | 0.6645 | ||||
5 | 30 | 2.04 | 0.0680 | 0.7315 | ||||
Male adult | E = 0.1879P−0.724 | 0.1879 | 0.724 | 1 | 30 | 5.25 | 0.1750 | 0.0000 |
2 | 30 | 3.38 | 0.1125 | 0.3571 | ||||
3 | 30 | 2.50 | 0.0833 | 0.5238 | ||||
4 | 30 | 2.00 | 0.0667 | 0.6190 | ||||
5 | 30 | 1.75 | 0.0583 | 0.6667 | ||||
4th instar larvae | E = 0.1750P−0.488 | 0.1750 | 0.488 | 1 | 30 | 5.00 | 0.1667 | 0.0000 |
2 | 30 | 4.10 | 0.1367 | 0.1800 | ||||
3 | 30 | 3.20 | 0.1067 | 0.3600 | ||||
4 | 30 | 2.75 | 0.0917 | 0.4500 | ||||
5 | 30 | 2.20 | 0.0733 | 0.5600 | ||||
3rd instar larvae | E = 0.1247P−0.484 | 0.1247 | 0.484 | 1 | 30 | 3.80 | 0.1267 | 0.0000 |
2 | 30 | 2.80 | 0.0933 | 0.2632 | ||||
3 | 30 | 2.13 | 0.0711 | 0.4386 | ||||
4 | 30 | 1.80 | 0.0600 | 0.5263 | ||||
5 | 30 | 1.84 | 0.0613 | 0.5158 |
Predator | Intraspecific Interference Equation | Search Constant (Q) | Interference Coefficient (m) | Predator Density | Prey Density | Prey Killed by per Predator | Predation Rate | Intensity of Scramble Competition (I) |
---|---|---|---|---|---|---|---|---|
Female adult | E = 0.2495P−0.528 | 0.2495 | 0.528 | 1 | 500 | 132.60 | 0.2652 | 0.0000 |
2 | 500 | 78.90 | 0.1578 | 0.4050 | ||||
3 | 500 | 66.13 | 0.1323 | 0.5013 | ||||
4 | 500 | 65.10 | 0.1302 | 0.5091 | ||||
5 | 500 | 53.92 | 0.1078 | 0.5934 | ||||
Male adult | E = 0.1799P−0.446 | 0.1799 | 0.446 | 1 | 500 | 92.60 | 0.1852 | 0.0000 |
2 | 500 | 64.20 | 0.1284 | 0.3067 | ||||
3 | 500 | 52.07 | 0.1041 | 0.4377 | ||||
4 | 500 | 51.35 | 0.1027 | 0.4455 | ||||
5 | 500 | 44.08 | 0.0882 | 0.5240 | ||||
4th instar larvae | E = 0.2399P−0.29 | 0.2399 | 0.29 | 1 | 200 | 47.00 | 0.2350 | 0.0000 |
2 | 200 | 39.50 | 0.1975 | 0.1596 | ||||
3 | 200 | 36.00 | 0.1800 | 0.2340 | ||||
4 | 200 | 34.00 | 0.1700 | 0.2766 | ||||
5 | 200 | 28.00 | 0.1400 | 0.4043 | ||||
3rd instar larvae | E = 0.2037P−0.263 | 0.2037 | 0.263 | 1 | 200 | 40.60 | 0.2030 | 0.0000 |
2 | 200 | 33.30 | 0.1665 | 0.1798 | ||||
3 | 200 | 32.20 | 0.1610 | 0.2069 | ||||
4 | 200 | 28.20 | 0.1410 | 0.3054 | ||||
5 | 200 | 26.00 | 0.1300 | 0.3596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Ruan, G.; Tang, M.; Guo, X.; Yang, M.; Wang, X.; Chen, X. Functional Response, Interference, and Predation Efficiency of Diomus guilavoguii (Coleoptera: Coccinellidae) on Paracoccus marginatus (Hemiptera: Pseudococcidae). Insects 2025, 16, 971. https://doi.org/10.3390/insects16090971
Lin Q, Ruan G, Tang M, Guo X, Yang M, Wang X, Chen X. Functional Response, Interference, and Predation Efficiency of Diomus guilavoguii (Coleoptera: Coccinellidae) on Paracoccus marginatus (Hemiptera: Pseudococcidae). Insects. 2025; 16(9):971. https://doi.org/10.3390/insects16090971
Chicago/Turabian StyleLin, Qijing, Guoguo Ruan, Mingjie Tang, Xuanjie Guo, Meixiaoyun Yang, Xingmin Wang, and Xiaosheng Chen. 2025. "Functional Response, Interference, and Predation Efficiency of Diomus guilavoguii (Coleoptera: Coccinellidae) on Paracoccus marginatus (Hemiptera: Pseudococcidae)" Insects 16, no. 9: 971. https://doi.org/10.3390/insects16090971
APA StyleLin, Q., Ruan, G., Tang, M., Guo, X., Yang, M., Wang, X., & Chen, X. (2025). Functional Response, Interference, and Predation Efficiency of Diomus guilavoguii (Coleoptera: Coccinellidae) on Paracoccus marginatus (Hemiptera: Pseudococcidae). Insects, 16(9), 971. https://doi.org/10.3390/insects16090971