Transcriptome and Functional Analyses Revealed the Carboxylesterase Genes Involved in Pyrethroid Resistance in Anopheles sinensis (Diptera: Culicidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Strains
2.2. Identification of Pyrethroid Resistance-Associated CCEs Using RNA-Seq
2.3. qRT-PCR Verification of Pyrethroid Resistance-Associated CCE Genes
2.4. RNAI-Based Validation of Pyrethroid Resistance-Related CCE Genes
2.5. Statistical Analysis
3. Results and Discussion
3.1. Identification of Carboxylesterase Genes Associated with Pyrethroid Resistance in An. sinensis
3.1.1. Identification of CCEs via Comparative Transcriptomics
3.1.2. Validation of Differential Expression for CCEs via qRT-PCR
3.2. Function Analysis of Carboxylesterase Genes in Pyrethroid Resistance of An. sinensis
3.2.1. Determination of Time Points for CCE Silencing
3.2.2. Functional Analysis of CCE Genes in Pyrethroid Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rueda, L.M.; Zhao, T.; MA, Y.J.; Gao, Q.; Ding, Z.G.; Khuntirat, B.; Sattabongkot, J.; Wilkerson, R.C. Updated distribution records of the Anopheles (Anopheles) hyrcanus species-group (Diptera: Culicidae) in China. Zootaxa 2007, 1407, 43–55. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasites Vectors 2012, 5, 69. [Google Scholar] [CrossRef]
- Chang, X.; Zhong, D.; Fang, Q.; Hartsel, J.; Zhou, G.; Shi, L.; Fang, F.; Zhu, C.; Yan, G. Multiple resistances and complex mechanisms of Anopheles sinensis mosquito: A major obstacle to mosquito-borne diseases control and elimination in China. PLoS Negl. Trop. Dis. 2014, 8, e2889. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, S.; Zheng, X.; Huang, F.; Wang, D.; Shen, Y.; Su, Y.; Zhou, G.; Liu, F.; Jiang, J. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China. Parasites Vectors 2012, 5, 136. [Google Scholar] [CrossRef]
- World Health Organization. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016; pp. 6–35. Available online: https://iris.who.int/handle/10665/250677 (accessed on 30 June 2018).
- Hemingway, J.; Field, L.; Vontas, J. An overview of insecticide resistance. Science 2002, 298, 96–97. [Google Scholar] [CrossRef]
- Zaim, M.; Guillet, P. Alternative insecticides: An urgent need. Trends Parasitol. 2002, 18, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Butler, D. Mosquitoes score in chemical war. Nature 2011, 475, 19. [Google Scholar] [CrossRef]
- Kelvin, A.A. Outbreak of Chikungunya in the Republic of Congo and the global picture. J. Infect. Dev. Ctries 2011, 5, 441–444. [Google Scholar] [CrossRef]
- Sun, D.; Wang, G.; Zeng, L.; Li, S.; He, C.; Hu, X.; Wang, S. Extensive resistance of Anopheles sinensis to insecticides in malaria-endemic areas of Hainan Province, China. Am. J. Trop. Med. Hyg. 2017, 97, 295–298. [Google Scholar] [CrossRef]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Chevillon, C.; Guillemaud, T.; Lenormand, T.; Pasteur, N. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos. Trans. R. Soc. B Biol. Sci. 1998, 353, 1707–1711. [Google Scholar] [CrossRef]
- Feyereisen, R. Insect cytochrome P450. In Comprehensive Molecular Insect Science; Gilbert, L., Iatrou, K., Gill, S.S., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; Volume 4, pp. 1–77. [Google Scholar]
- Marcombe, S.; Mathieu, R.B.; Pocquet, N.; Riaz, M.-A.; Poupardin, R.; Sélior, S.; Darriet, F.; Reynaud, S.; Yébakima, A.; Corbel, V.; et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS ONE 2012, 7, e30989. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, G.; Muthusamy, R.; Narayanan, M.; Shivakumar, M.S.; Kweka, E.J. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol. Res. 2023, 122, 3205–3212. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Si, F.; Li, J.; Yan, Z.; Yan, Z.; He, X.; Chen, B. Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pest Manag. Sci. 2018, 74, 159–169. [Google Scholar] [CrossRef]
- Yan, Z.; He, Z.; Yan, Z.; Si, F.; Zhou, Y.; Chen, B. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae). Pest. Manag. Sci. 2018, 74, 1810–1820. [Google Scholar] [CrossRef]
- He, Q.; Yan, Z.; Si, F.; Zhou, Y.; Fu, W.; Chen, B. ATP-binding cassette (ABC) transporter genes involved in pyrethroid resistance in the malaria vector Anopheles sinensis: Genome-wide identification, characteristics, phylogenetics, and expression profile. Int. J. Mol. Sci. 2019, 20, 1049. [Google Scholar] [CrossRef]
- Tao, F.; Si, F.; Hong, R.; He, X.; Li, X.; Qiao, L.; He, Z.; Yan, Z.; He, S.; Chen, B. Glutathione S-transferase (GST) genes and their function associated with pyrethroid resistance in the malaria vector Anopheles sinensis. Pest Manag. Sci. 2022, 78, 4127–4139. [Google Scholar] [CrossRef]
- Si, F.; Qiao, L.; He, Q.; Zhou, Y.; Yan, Z.; Chen, B. HSP superfamily of genes in the malaria vector Anopheles sinensis: Diversity, phylogenetics and association with pyrethroid resistance. Malar. J. 2019, 18, 132. [Google Scholar] [CrossRef]
- Liu, B.; Qiao, L.; He, Q.; Zhou, Y.; Ren, S.; Chen, B. Genome-wide identification, characterization and evolution of cuticular protein genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). Insect. Sci. 2018, 25, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Cygler, M.; Schrag, J.D.; Sussman, J.L.; Harel, M.; Silman, I.; Gentry, M.K.; Doctor, B.P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993, 2, 366–382. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qiao, C. Mechanism and application of insect detoxification enzymes in bioremediation of pesticide contamination. J. Agro-Environ. Sci. 2002, 21, 285–287. Available online: https://www.aes.org.cn/nyhjkxxb/ch/reader/view_abstract.aspx?file_no=8574&flag=1 (accessed on 30 June 2002).
- Oakeshott, J.G.; Devonshire, A.L.; Claudianos, C.; Sutherland, T.D.; Horne, I.; Campbell, P.M.; Ollis, D.L.; Russell, R.J. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin-and carboxyl-esterases. Chem. Biol. Interact. 2005, 157, 269–275. [Google Scholar] [CrossRef]
- Zhan, H.; Huang, Y.; Lin, Z.; Bhatt, P.; Chen, S. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 2020, 182, 109138. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Rode, S.; Lonare, S.; Demiwal, P.; Narasimhappa, P.; Arun, E.; Kumar, R.; Das, J.; Ramamurthy, P.C.; Sircar, D.; et al. Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from Helicoverpa armigera. Pestic. Biochem. Physiol. 2024, 200, 105844. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, Y.; Li, X.; Chen, M. Functional analysis of a carboxylesterase gene associated with isoprocarb and cyhalothrin resistance in Rhopalosiphum padi (L.). Front. Physiol. 2018, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Xu, X.; Sang, Z.; Wang, R.; Ullah, F.; Gao, X.; Song, D. Characterization of the insecticide detoxification carboxylesterase Boest1 from Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae). Pest Manag. Sci. 2022, 78, 591–602. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Han, Y.; Wang, L.; Liu, Z.; Guo, H.; Fang, J. Transcript-level analysis of detoxification gene mutation-mediated chlorpyrifos resistance in Laodelphax striatellus (Hemiptera: Delphacidae). J. Econ. Entomol. 2019, 112, 1285–1291. [Google Scholar] [CrossRef]
- Xu, J.; Chang, Y.; Lu, M.; Tie, Y.; Dong, Y.; Chen, G.; Ma, Z.; Liu, X.; Li, Y. Two single mutations in carboxylesterase 001C improve fenvalerate hydrolase activity in Helicoverpa armigera. Pestic. Biochem. Physiol. 2021, 179, 104969. [Google Scholar] [CrossRef]
- Heidari, R.; Devonshire, A.L.; Campbell, B.E.; Dorrian, S.J.; Oakeshott, J.G.; Russell, R.J. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem. Mol. Biol. 2005, 35, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Feng, X. Functional Characterization of Carboxylesterases in Pyrethroid Resistant House Fly, Musca Domestica. PhD Thesis, Auburn University, Auburn, AL, USA, 2018. Available online: https://www.proquest.com/openview/0d65cf2c4f2c2640ed6c3a2986ef362a/1?cbl=18750&diss=y&pq-origsite=gscholar (accessed on 4 August 2018).
- Zhang, L.; Shi, J.; Shi, X.; Liang, P.; Gao, J.; Gao, X. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae). Comp. Biochem. Physiol. B. 2010, 156, 6–11. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Yuan, G.; Campbell, P.M.; Teese, M.G.; Russell, R.J.; Oakeshott, J.G.; Wu, Y. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm. Helicoverpa armigera. Insect Biochem. Mol. Biol. 2011, 41, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, B.; Hu, X.; Shi, X.; Qi, L.; Liang, P.; Gao, X. Overexpression of PxαE14 contributing to detoxification of multiple insecticides in Plutella xylostella (L.). J. Agric. Food Chem. 2022, 70, 5794–5804. [Google Scholar] [CrossRef]
- Gong, Y.; Li, M.; Li, T.; Liu, N. Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus. Insect Sci. 2022, 29, 199–214. [Google Scholar] [CrossRef]
- Goindin, D.; Delannay, C.; Gelasse, A.; Ramdini, C.; Gaude, T.; Faucon, F.; David, J.-P.; Gustave, J.; Vega-Rua, A.; Fouque, F. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect. Dis. Poverty 2017, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Oumbouke, W.A.; Pignatelli, P.; Barreaux, A.M.G.; Tia, I.Z.; Koffi, A.A.; Alou, L.P.A.; Sternberg, E.D.; Thomas, M.B.; Weetman, D.; ’Guessan, R.N. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d’Ivoire. Sci. Rep. 2020, 10, 15066. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hu, H.; Ma, K.; Zhou, D.; Yu, J.; Zhong, D.; Fang, F.; Chang, X.; Hu, S.; Zou, F.; et al. Development of resistance to pyrethroid in Culex pipiens pallens population under different insecticide selection pressures. PLoS Negl. Trop. Dis. 2015, 9, e0003928. [Google Scholar] [CrossRef]
- Aponte, H.A.; Penilla, R.; Dzul-Manzanilla, F.; Che-Mendoza, A.; López, A.D.; Solis, F.; Manrique-Saide, P.; Ranson, H.; Lenhart, A.; McCall, P.J.; et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pestic. Biochem. Physiol. 2013, 107, 226–234. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, Y.; He, Z.; Li, W.; Si, F.; Tang, Y.; He, Q.; Qiao, L.; Yan, Z.; Fu, W.; et al. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae). Paras. Vector. 2014, 7, 314. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, Y.; Chen, B. ASDB: A comprehensive omics database for Anopheles sinensis. Genomics 2021, 113, 976–982. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; World, B.J.; Pachter, L.P. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Lü, F.G.; Fu, K.Y.; Li, Q.; Guo, W.C.; Ahmat, T.; Li, G.Q. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. Pestic. Biochem. Physiol. 2015, 122, 86–95. [Google Scholar] [CrossRef]
- Xie, M.; Ren, N.; You, Y.; Chen, W.; Song, Q.; You, M. Molecular characterization of two α-esterase genes involving chlorpyrifos detoxification in the diamondback moth, Plutella xylostella. Pest Manag. Sci. 2017, 73, 1204–1212. [Google Scholar] [CrossRef]
- Feng, X.; Liu, N. Functional characterization of carboxylesterases in insecticide resistant house flies, Musca domestica. J. Vis. Exp. 2018, 138, 58106. [Google Scholar] [CrossRef]
- Bai, L.; Zhao, C.; Xu, J.; Feng, C.; Li, Y.; Dong, Y.; Ma, Z. Identification and biochemical characterization of carboxylesterase 001G associated with insecticide detoxification in Helicoverpa armigera. Pestic. Biochem. Physiol. 2019, 157, 69–79. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Paton, M.G.; Karunaratne, S.H.P.; Giakoumaki, E.; Roberts, N.; Hemingway, J. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem. J. 2000, 346, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Poulton, B.C.; Fraser, C.; Amalia, A.; Sattelle, D.B.; Lycett, G.J. Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito. PLoS Negl. Trop. Dis. 2024, 18, e0011595. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bai, L.; Zhao, C.; Xu, J.; Sun, Z.; Dong, Y.; Li, D.; Liu, X.; Ma, Z. Functional characterization of two carboxylesterase genes involved in pyrethroid detoxification in Helicoverpa armigera. J. Agric. Food Chem. 2020, 68, 3390–3402. [Google Scholar] [CrossRef]
- Li, H.; Buczkowski, G.; Mittapalli, O.; Xie, J.; Wu, J.; Westerman, R.; Schemerhorn, B.J.; Murdock, L.L.; Pittendrigh, B.R. Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress. Insect Mol. Biol. 2008, 17, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Arrese, E.; Soulages, J. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef]
- Mao, K.; Ren, Z.; Li, W.; Cai, T.; Qin, X.; Wan, H.; Jun, B.; He, S.; Li, J. Carboxylesterase genes in nitenpyram-resistant brown planthoppers, Nilaparvata lugens. Insect Sci. 2021, 28, 1049–1060. [Google Scholar] [CrossRef]
- Ren, N.; Xie, M.; You, Y.; Li, J.; Chen, W.; Cheng, X.; You, M. Fipronil-resistance mediated by carboxylesterases in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol. Sin. 2015, 58, 288–296. [Google Scholar] [CrossRef]
- Guo, Y.; Si, F.; Han, B.; Qiao, L.; Chen, B. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). Acta Trop. 2024, 260, 107413. [Google Scholar] [CrossRef]
- Piermarini, P.M.; Esquivel, C.J.; Denton, J.S. Malpighian tubules as novel targets for mosquito control. Int. J. Environ. Res. Public Health 2017, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Diop, M.M.; Chandre, F.; Rossignol, M.; Porciani, A.; Chateau, M.; Moiroux, N.; Pennetier, C. Sub-lethal insecticide exposure affects host biting efficiency of Kdr-resistant Anopheles gambiae. Peer Commun. J. 2021, 1, E28. [Google Scholar] [CrossRef]
- Nouage, L.; Elanga-Ndille, E.; Binyang, A.; Tchouakui, M.; Atsatse, T.; Ndo, C.; Kekeunou, S.; Wondji, C.S. Influence of GST- and P450-based metabolic resistance to pyrethroids on blood feeding in the major African malaria vector Anopheles funestus. PLoS ONE 2020, 15, e0230984. [Google Scholar] [CrossRef]
- Spillings, B.L.; Coetzee, M.; Koekemoer, L.L.; Brooke, B.D. The effect of a single blood meal on the phenotypic expression of insecticide resistance in the major malaria vector Anopheles funestus. Malar. J. 2008, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.V.; Brooke, B.D. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasites Vectors 2014, 7, 390. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; William, R.R.; Zhang, L.; Scott, J.G.; Gao, X.; Kristensen, M.; Liu, N. A whole transcriptomal linkage analysis of gene co-regulation in insecticide resistant house flies, Musca domestica. BMC Genom. 2013, 14, 803. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, X.; Sun, Y.; Ma, L.; Shen, B.; Zhu, C. Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis. PLoS ONE 2015, 10, e0143387. [Google Scholar] [CrossRef]
- Feng, X.; Liu, N. Functional analyses of house fly carboxylesterases involved in insecticide resistance. Front. Physiol. 2020, 11, 595009. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Tian, Z.; Li, Y.; Ye, X.; Li, R.; Li, X.; Zheng, S.; Liu, J.; Zhang, Y. Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). J. Hazard. Mater. 2021, 407, 124612. [Google Scholar] [CrossRef]
- Xia, J.; Xu, H.; Yang, Z.; Pan, H.; Yang, X.; Guo, Z.; Yang, F.; Guo, L.; Sun, X.; Wang, S.; et al. Genome-wide analysis of carboxylesterases (COEs) in the whitefly, Bemisia tabaci (Gennadius). Int. J. Mol. Sci. 2019, 20, 4973. [Google Scholar] [CrossRef]
- Devonshire, A.L.; Heidari, R.; Huang, H.Z.; Hammock, B.D.; Russell, R.J.; Oakeshot, J.G. Hydrolysis of individual isomers of fluorogenic pyrethroid analogs by mutant carboxylesterases from Lucilia cuprina. Insect Biochem. Molec. 2007, 37, 891–902. [Google Scholar] [CrossRef]
- Li, Y.; Farnsworth, C.A.; Coppin, C.W.; Teese, M.G.; Liu, J.W.; Scott, C.; Zhang, X.; Russell, R.J.; Oakeshott, J.G. Organophosphate and pyrethroid hydrolase activities of mutant esterases from the cotton bollworm Helicoverpa armigera. PLoS ONE 2013, 8, e77685. [Google Scholar] [CrossRef]
- Marcombe, S.; Fustec, B.; Cattel, J.; Chonephetsarath, S.; Thammavong, P.; Phommavanh, N.; David, J.P.; Corbel, V.; Sutherland, I.W.; Hertz, J.C.; et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Negl. Trop. Dis. 2019, 13, e0007852. [Google Scholar] [CrossRef]
- Poupardin, R.; Srisukontarat, W.; Yunta, C.; Ranson, H. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 2014, 8, e2743. [Google Scholar] [CrossRef] [PubMed]
- Grigoraki, L.; Lagnel, J.; Kioulos, I.; Kampouraki, A.; Morou, E.; Labbe, P.; Weill, M.; Vontas, J. Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl. Trop. Dis. 2015, 9, e0003771. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Lycett, G.J.; McLaughlin, L.A.; Ranson, H.; Hemingway, J.; Kafatos, F.C.; Loukeris, T.G.; Paine, M.J.I. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol. Biol. 2006, 15, 321–327. [Google Scholar] [CrossRef]
- Lumjuan, N.; Rajatileka, S.; Changsom, D.; Wicheer, J.; Leelapat, P.; Prapanthadara, L.A.; Somboon, P.; Lycett, G.; Ranson, H. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem. Mol. Biol. 2011, 41, 203–209. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Zhang, L.; Liu, N. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci. Rep. 2014, 4, 6474. [Google Scholar] [CrossRef]
- Li, R.; Sun, X.; Liang, P.; Gao, X. Characterization of carboxylesterase PxαE8 and its role in multi-insecticide resistance in Plutella xylostella (L.). J. Integr. Agric. 2022, 21, 1713–1721. [Google Scholar] [CrossRef]
- Peng, C.; Yin, H.; Liu, Y.; Mao, X.F.; Liu, Z.Y. RNAi mediated gene silencing of detoxification related genes in the Ectropis oblique. Genes 2022, 13, 1141. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Zhang, D.; Li, Z.; Zhang, S.; Liu, X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. Insect Mol. Biol. 2023, 32, 305–315. [Google Scholar] [CrossRef]
- Vaughan, A.M.; Hawkes, N.J.; Hemingway, J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide resistant Culex quinquefasciatus. Biochem. J. 1997, 325, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, C.E.; Shan, G.; Ottea, J. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pest Sci. 2005, 30, 75–83. [Google Scholar] [CrossRef]
- Yan, J.; Nauen, R.; Reitz, S.; Alyokhin, A.; Zhang, J.; Mota-Sanchez, D.; Kim, Y.; Palli, S.R.; Rondon, S.I.; Nault, B.A.; et al. The new kid on the block in insect pest management: Sprayable RNAi goes commercial. Sci. China Life Sci. 2024, 67, 1766–1768. [Google Scholar] [CrossRef]
- Narva, K.; Toprak, U.; Alyokhin, A.; Groves, R.; Jurat-Fuentes, J.L.; Moar, W.; Nauen, R.; Whipple, S.; Head, G. Insecticide resistance management scenarios differ for RNA-based sprays and traits. Insect Mol. Biol. 2025, 34, 518–526. [Google Scholar] [CrossRef]
- Airs, P.M.; Bartholomay, L.C. RNA Interference for Mosquito and Mosquito-Borne Disease Control. Insects 2017, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, R.M.; Duman-Scheel, M. Advances in oral RNAi for disease vector mosquito research and control. Curr. Opin. Insect Sci. 2020, 40, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Berthaud, V.; Martin, E.; Vallon, L.; Rebollo, R.; Vallier, A.; Vigneron, A.; Hay, A.; Moro, C.V.; Minard, G. Evaluation of non-invasive dsRNA delivery methods for the development of RNA interference in the Asian tiger mosquito Aedes albopictus. J. Pest Sci. 2025, 98, 581–596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Gu, X.; Si, F.; Chen, X.; Qiao, L.; Yan, H.; Chen, B. Transcriptome and Functional Analyses Revealed the Carboxylesterase Genes Involved in Pyrethroid Resistance in Anopheles sinensis (Diptera: Culicidae). Insects 2025, 16, 938. https://doi.org/10.3390/insects16090938
Wei Y, Gu X, Si F, Chen X, Qiao L, Yan H, Chen B. Transcriptome and Functional Analyses Revealed the Carboxylesterase Genes Involved in Pyrethroid Resistance in Anopheles sinensis (Diptera: Culicidae). Insects. 2025; 16(9):938. https://doi.org/10.3390/insects16090938
Chicago/Turabian StyleWei, Yiyun, Xinyao Gu, Fengling Si, Xiaojie Chen, Liang Qiao, Hongxing Yan, and Bin Chen. 2025. "Transcriptome and Functional Analyses Revealed the Carboxylesterase Genes Involved in Pyrethroid Resistance in Anopheles sinensis (Diptera: Culicidae)" Insects 16, no. 9: 938. https://doi.org/10.3390/insects16090938
APA StyleWei, Y., Gu, X., Si, F., Chen, X., Qiao, L., Yan, H., & Chen, B. (2025). Transcriptome and Functional Analyses Revealed the Carboxylesterase Genes Involved in Pyrethroid Resistance in Anopheles sinensis (Diptera: Culicidae). Insects, 16(9), 938. https://doi.org/10.3390/insects16090938