Preliminary Assessment of Bespoke (‘X-tec’) Silica Particles for IRS Applications
Simple Summary
Abstract
1. Introduction
1.1. Indoor Residual Spraying (IRS) of Insecticides
1.2. The Physical State of Insecticides and Biological Efficacy
1.3. Silica as a Carrier for Insecticides
2. Materials and Methods
2.1. Molecular Computer Modelling of Silica Particles
2.2. X-tec Silica Manufacture
2.3. Material Characterisation of 10% X-tec Silica
2.4. Carbon, Hydrogen, and Nitrogen (CHN) Analysis
2.5. Nitrogen Porosimetry
2.6. Particle Size Measurement
2.7. Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy (SEM/EDS)
2.8. Powder X-Ray Diffraction (PXRD)
2.9. Entomological Testing: Mosquito Rearing
2.10. Cone Bioassays
3. Results
3.1. Molecular Computer Modelling of Silica Particles
3.2. X-tec Silica Manufacture
3.3. Material Characterisation of 10% X-tec Silica
3.3.1. CHN Analysis
3.3.2. Nitrogen Porosimetry
3.3.3. SEM/EDS
3.3.4. PXRD Analysis
3.4. Entomological Testing: Cone Bioassays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irish, S.R.; Nimmo, D.; Bharmel, J.; Tripet, F.; Müller, P.; Manrique-Saide, P.; Moore, S.J. A review of selective indoor residual spraying for malaria control. Malar. J. 2024, 23, 252. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Erriah, B.; Hu, C.T.; Reiter, E.; Zhu, X.; López-Mejías, V.; Carmona-Sepúlveda, I.P.; Ward, M.D.; Kahr, B. A deltamethrin crystal polymorph for more effective malaria control. Proc. Natl. Acad. Sci. USA 2020, 117, 26633–26638. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hu, C.T.; Erriah, B.; Vogt-Maranto, L.; Yang, J.; Yang, Y.; Qiu, M.; Fellah, N.; Tuckerman, M.E.; Ward, M.D.; et al. Imidacloprid Crystal Polymorphs for Disease Vector Control and Pollinator Protection. J. Am. Chem. Soc. 2021, 143, 17144–17152. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, C.T.; Zhu, X.; Zhu, Q.; Ward, M.D.; Kahr, B. DDT Polymorphism and the Lethality of Crystal Forms. Angew. Chem. Int. Ed. Engl. 2017, 56, 10165–10169. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hu, C.T.; Yang, J.; Joyce, L.A.; Qiu, M.; Ward, M.D.; Kahr, B. Manipulating Solid Forms of Contact Insecticides for Infectious Disease Prevention. J. Am. Chem. Soc. 2019, 141, 16858–16864. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Yang, R.; Zhang, H.; Yang, J. Crystal engineering in the development of improved pesticide products. Adv. Agrochem 2022, 1, 39–60. [Google Scholar] [CrossRef]
- Carson, J.; Erriah, B.; Herodotou, S.; Shtukenberg, A.G.; Smith, L.; Ryazanskaya, S.; Ward, M.D.; Kahr, B.; Lees, R.S. Overcoming insecticide resistance in Anopheles mosquitoes by using faster-acting solid forms of deltamethrin. Malar. J. 2023, 22, 129. [Google Scholar] [CrossRef] [PubMed]
- Shawir, M.; le Patourel, G.N.J.; Moustafa, F.I. Amorphous silica as an additive to dust formulations of insecticides for stored grain pest control. J. Stored Prod. Res. 1988, 24, 123–130. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, L.; Li, X.; Wang, Z.; Zhang, Y.; Zhang, S.; Tang, T.; Chen, F.; Du, F. Bio-based clothianidin-loaded solid dispersion using composite carriers to improve efficacy and reduce environmental toxicity. Pest Manag. Sci. 2021, 77, 5246–5254. [Google Scholar] [CrossRef] [PubMed]
- Nanev, C.N. Critical size of crystals growing under diffusion conditions for loss of polyhedral stability. J. Cryst. Growth 1994, 140, 381–387. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Gao, Y.; Guo, B.; Reiter, G.; Xu, J. Determination of the Critical Size of Secondary Nuclei on the Lateral Growth Front of Lamellar Polymer Crystals. Macromolecules 2019, 52, 7439–7447. [Google Scholar] [CrossRef]
- Williams, J.; Flood, L.; Praulins, G.; Ingham, V.A.; Morgan, J.; Lees, R.S.; Ranson, H. Characterisation of Anopheles strains used for laboratory screening of new vector control products. Parasit Vectors 2019, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Laboratory and Field-Testing of Long-Lasting Insecticidal Nets; WHO/HTM/NTD/WHOPES/20131; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
Name | SSA (m2/g) | MPV (cm3/g) | MPD (nm) |
---|---|---|---|
X-tec silica (unloaded) | 167 | 0.42 | 7.3 |
X-tec silica (10% clothianidin) | 140 | 0.36 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herodotou, S.; Lissenden, N.; Skinley, K.; Nimmo, D.; Snetselaar, J.; Guy, A.; Myers, P.; Ryazanskaya, S. Preliminary Assessment of Bespoke (‘X-tec’) Silica Particles for IRS Applications. Insects 2025, 16, 937. https://doi.org/10.3390/insects16090937
Herodotou S, Lissenden N, Skinley K, Nimmo D, Snetselaar J, Guy A, Myers P, Ryazanskaya S. Preliminary Assessment of Bespoke (‘X-tec’) Silica Particles for IRS Applications. Insects. 2025; 16(9):937. https://doi.org/10.3390/insects16090937
Chicago/Turabian StyleHerodotou, Stephania, Natalie Lissenden, Kevin Skinley, Derric Nimmo, Janneke Snetselaar, Amy Guy, Peter Myers, and Svetlana Ryazanskaya. 2025. "Preliminary Assessment of Bespoke (‘X-tec’) Silica Particles for IRS Applications" Insects 16, no. 9: 937. https://doi.org/10.3390/insects16090937
APA StyleHerodotou, S., Lissenden, N., Skinley, K., Nimmo, D., Snetselaar, J., Guy, A., Myers, P., & Ryazanskaya, S. (2025). Preliminary Assessment of Bespoke (‘X-tec’) Silica Particles for IRS Applications. Insects, 16(9), 937. https://doi.org/10.3390/insects16090937