Transcriptomic Analysis of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Reveals Cold Tolerance Mechanisms Under Parasitism Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Determination of Supercooling Point (SCP)
2.3. RNA Isolation and Transcriptome Sequencing
2.4. Transcriptome Assembly and Gene Expression Analysis
2.5. Real-Time Quantitative PCR
2.6. ER Activity and Cytosolic Ca2+ Concentration Assay
2.7. Statistical Analyses
3. Results
3.1. SCP Values of Host Larvae After Parasitism
3.2. mRNA Sequencing of the Larval Transcriptome
3.3. Differential Gene Expression
3.4. Expression Patterns of Temperature Tolerance Associated Genes
3.5. Transcriptional Profiles of Selected Genes by RT-qPCR
3.6. Detection of ER Activity and Cytosolic Ca2+ Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gulinuer, A.; Xing, B.L.; Yang, L. Host transcriptome analysis of Spodoptera frugiperda larvae parasitized by Microplitis manila. Insects 2023, 14, 100. [Google Scholar] [CrossRef]
- Wang, Z.-Z.; Ye, X.-Q.; Shi, M.; Li, F.; Wang, Z.-H.; Zhou, Y.-N.; Gu, Q.-J.; Wu, X.-T.; Yin, C.-L.; Guo, D.-H.; et al. Parasitic insect-derived miRNAs modulate host development. Nat. Commun. 2018, 9, 2205. [Google Scholar] [CrossRef]
- Wang, B.B.; Ren, C.D.; Yang, L.; Fang, Q.; Song, Q.S.; Ye, G.Y. Venom α-amylase of the endoparasitic wasp Pteromalus puparum influences host metabolism. Pest Manag. Sci. 2020, 76, 2180–2189. [Google Scholar] [CrossRef]
- Xing, B.L.; Wang, S.F.; Gulinuer, A.; Ye, G.Y.; Yang, L. Transcriptional regulation of host insulin signaling pathway genes controlling larval development by Microplitis manilae parasitization. Arch. Insect Biochem. 2023, 113, e22003. [Google Scholar] [CrossRef]
- MacQuarrie, C.J.K.; Derry, V.; Gray, M.; Mielewczyk, N.; Crossland, D.; Ogden, J.B. Effect of a severe cold spell on overwintering survival of an invasive forest insect pest. Curr. Opin. Insect Sci. 2024, 5, 100077. [Google Scholar] [CrossRef]
- Rivers, D.B.; Lee, R.E.; Denlinger, D.L. Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host Sarcophaga crassipalpis. J. Insect Physiol. 2000, 46, 99–106. [Google Scholar] [CrossRef]
- Raimundo, N.; Krisko, A. Cross-organelle communication at the core of longevity. Aging 2018, 10, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.W.; Wu, H.Z.; Ye, X.H.; Fang, Q.; Zhou, H.X.; Ye, G.Y. An endoparasitoid uses its egg surface proteins to regulate its host immune response. Insect Sci. 2022, 29, 1030–1046. [Google Scholar] [CrossRef]
- Burke, B.; Roux, K.J. Nuclei take a position: Managing nuclear location. Dev. Cell 2009, 17, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol. 2003, 15, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chang, C.; Dai, S.M. Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest. Manag. Sci. 2010, 66, 762–766. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, P.; Gurr, G.M.; Zheng, X.; Chen, G.; Heong, K.L. Rice Pest Management by Ecological Engineering: A Pioneering Attempt in China. In Rice Planthoppers: Ecology, Management, Socio Economics and Policy; Springer: Dordrecht, The Netherlands, 2014; pp. 161–178. [Google Scholar]
- Pan, D.D.; Liu, Z.X.; Lu, M.X.; Cao, S.S.; Yan, W.F.; Du, Y.Z. Species and occurrence dynamics of parasitic wasps of the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) in Yangzhou. J. Enviro. Entomol. 2016, 38, 1106–1113. [Google Scholar]
- Sinclair, B.J.; Alvarado, L.E.C.; Ferguson, L.V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome. Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Banani, H.; Marcet-Houben, M.; Ballester, A.R.; Abbruscato, P.; González-Candelas, L.; Gabaldón, T.; Spadaro, D. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genom. 2016, 1, 19. [Google Scholar] [CrossRef]
- Li, Z.L.; Pan, D.D.; Lu, M.X.; Du, Y.Z. Identification of qRT-PCR reference genes for Chilo suppressalis (Walker) during parasitism by Cotesia chilonis (Matsumura). J. Asia. Pac. Entomol. 2020, 23, 107–112. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, X.; Yin, C.; Jiang, F.; Du, X.; Chen, T.; Zhang, Q.; Qiu, L.; Xu, H.; Hull, J.J.; et al. A chromosome-level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest, Chilo suppressalis. Mol. Ecol. Resour. 2020, 20, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.; MacMillan, H.A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 2017, 79, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Elnitsky, M.A.; Rinehart, J.P.; Hayward, S.A.L.; Sandro, L.H.; Denlinger, D.L. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J. Exp. Biol. 2006, 209, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Kawarasaki, Y.; Teets, N.M.; Denlinger, D.L.; Lee, R.E. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. J. Exp. Biol. 2013, 216, 3937–3945. [Google Scholar] [CrossRef]
- Duman, J.G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 2001, 63, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, B.J.; Vernon, P.; Klok, C.J.; Chown, S.L. Insects at low temperatures: An ecological perspective. Trends Ecol. Evol. 2003, 18, 257–262. [Google Scholar] [CrossRef]
- Cooper, B.S.; Hammad, L.A.; Fisher, N.P.; Karty, J.A.; Montooth, K.L. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster. Evolution 2012, 66, 1976–1984. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, S.; Li, Y.; Xiao, Z.; Zhou, M.; Wang, S.; Zhang, D.; Gao, Y. Effect of long-term cold storage on trehalose metabolism of pre-wintering Harmonia axyridis adults and changes in morphological diversity before and after wintering. PLoS ONE 2020, 15, e0230435. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Wang, L.; Shan, D.; Zhang, Y.; Liu, X.; Sun, Y.; Zhang, Z.; Fang, J. Effects of high temperature on life history traits and heat shock protein expression in chlorpyrifos-resistant Laodelphax striatella. Pestic. Biochem. Phys. 2017, 136, 64–69. [Google Scholar] [CrossRef]
- Liberek, K.; Lewandowska, A.; Ziętkiewicz, S. Chaperones in control of protein disaggregation. Embo. J. 2008, 27, 328–335. [Google Scholar] [CrossRef]
- Żwirowski, S.; Kłosowska, A.; Obuchowski, I.; Nillegoda, N.B.; Piróg, A.; Ziętkiewicz, S.; Bukau, B.; Mogk, A.; Liberek, K. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. Embo. J. 2017, 36, 783–796. [Google Scholar] [CrossRef]
- Rogers, L.D.; Foster, L.J. The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2007, 104, 18520–18525. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.-W.; Xu, G.; Gan, S.-Y.; Chen, X.; Fang, Q.; Ye, G.-Y. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. J. Insect Physiol. 2016, 85, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, Z.; Yu, D.; Xu, C.; Hu, Y.; Liang, Y.; Jin, J.; Li, M. Microplitis bicoloratus parasitism promotes cyclophilin D-p53 interaction to induce apoptosis of hemocytes in Spodoptera litura. Arch. Insect Biochem. 2022, 112, e21970. [Google Scholar] [CrossRef] [PubMed]
- Mekahli, D.; Bultynck, G.; Parys, J.B.; Smedt, H.D.; Missiaen, L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a004317. [Google Scholar] [CrossRef]
- Roest, G.; Hesemans, E.; Welkenhuyzen, K.; Luyten, T.; Engedal, N.; Bultynck, G.; Parys, J.B. The ER stress inducer l-Azetidine-2-Carboxylic acid elevates the levels of Phospho-eIF2α and of LC3-II in a Ca2+-dependent manner. Cells 2018, 7, 239. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Chen, A.W.; Varner, J.D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 2011, 108, 2777–2793. [Google Scholar] [CrossRef]
- Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Bio. 2012, 13, 89–102. [Google Scholar] [CrossRef]
- Nakamatsu, Y.; Fujii, S.; Tanaka, T. Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with the help of teratocytes. J. Insect Physiol. 2002, 48, 1041–1052. [Google Scholar] [CrossRef]
- Salvador, G.; Cônsoli, F.L. Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biol. Control 2008, 45, 103–110. [Google Scholar] [CrossRef]
- Behroozia, E.; Izadia, H.; Samiha, M.A.; Moharamipour, S. Physiological strategy in overwintering larvae of pistachio white leaf borer, Ocneria terebinthina Strg. (Lepidoptera: Lymantriidae) in Rafsanjan, Iran, Ital. J. Zool. 2012, 79, 44–49. [Google Scholar]
- Bemani, M.; Izadi, H.; Mahdian, K.; Khani, A.; Samih, M.A. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comaroffi. J. Insect Physiol. 2012, 58, 897–902. [Google Scholar] [CrossRef]
Sample ID | Raw Reads | Clean Reads | Mapped Reads | Clean/Raw (%) | Mapping Ratio (%) | GC Content (%) | Q20 Percentage (%) |
---|---|---|---|---|---|---|---|
CK-1 | 39,298,080 | 37,947,750 | 29,348,812 | 96.56 | 77.38% | 45 | 96.5 |
CK-2 | 40,288,974 | 38,875,529 | 24,922,402 | 96.49 | 64.15% | 43 | 96.38 |
CK-3 | 38,032,526 | 36,554,305 | 27,541,204 | 96.11 | 75.39% | 46 | 96.39 |
P3d-1 | 40,815,776 | 39,096,635 | 25,993,339 | 95.79 | 66.56% | 44 | 97.47 |
P3d-2 | 40,568,982 | 39,148,395 | 29,423,481 | 96.50 | 75.24% | 45 | 97.5 |
P3d-3 | 41,113,492 | 39,735,610 | 24,592,438 | 96.65 | 61.93% | 42 | 97.61 |
P4d-1 | 35,184,070 | 34,032,418 | 21,634,570 | 96.73 | 63.61% | 43 | 97.72 |
P4d-2 | 38,969,532 | 37,868,907 | 27,525,104 | 97.18 | 72.73% | 44 | 97.72 |
P4d-3 | 36,991,348 | 36,000,191 | 22,920,868 | 97.32 | 63.70% | 43 | 97.75 |
Internal ID | P3d vs. CK | P4d vs. CK | P4d vs. P3d | Annotation | Best Blast Hit Species | |||
---|---|---|---|---|---|---|---|---|
log2FC | p Value | log2FC | p Value | log2FC | p Value | |||
Up-regulated gene | ||||||||
contig_67252 | 81.84 | 1.38 × 10−16 | 99.14 | 1.19 × 10−15 | 0.28 | 7.16 × 10−1 | Heat shock protein 90 | Lacanobia wlatinum |
contig_53467 | 294.18 | 2.45 × 10−26 | 505.65 | 4.38 × 10−33 | 0.78 | 1.99 × 10−1 | Heat shock protein 70 | Melitaea cinxia |
contig_62749 | 280.06 | 9.52 × 10−28 | 480.18 | 3.18 × 10−32 | 0.78 | 2.05 × 10−1 | Heat shock protein 70 | Cataclysta lemnata |
contig_45562 | 103.13 | 1.56 × 10−27 | 175.89 | 1.24 × 10−34 | 0.77 | 2.07 × 10−1 | Heat shock protein 70 | Globia sparganii |
contig_66597 | 2.32 | 7.42 × 10−3 | 15.02 | 2.51 × 10−9 | 2.70 | 1.83 × 10−3 | Heat shock protein 70 | Globia sparganii |
contig_66711 | 31.82 | 8.47 × 10−7 | 68.10 | 2.91 × 10−11 | 1.10 | 2.82 × 10−1 | Heat shock protein 70 | Cotesia rubecula |
contig_48668 | 1.95 | 5.40 × 10−3 | 10.02 | 3.16 × 10−8 | 2.36 | 9.82 × 10−3 | Heat shock protein 70 | Galleria mellonella |
contig_53496 | 43.34 | 1.87 × 10−17 | 85.32 | 2.12 × 10−25 | 0.98 | 1.23 × 10−1 | Hsc70-3 protein | Galleria mellonella |
contig_60591 | 64.80 | 4.19 × 10−16 | 80.53 | 3.13 × 10−18 | 0.31 | 6.50 × 10−1 | Activating transcription factor of chaperone | Diatraea saccharalis |
contig_46567 | 64.61 | 3.46 × 10−17 | 132.34 | 9.84 × 10−26 | 1.03 | 7.89 × 10−2 | Cathepsin L Protein | Fopius arisanus |
contig_53686 | 18.69 | 1.17 × 10−6 | 29.05 | 2.42 × 10−9 | 0.64 | 4.22 × 10−1 | Actin | Scoparia ambigua |
contig_62212 | 25.37 | 7.96 × 10−9 | 27.03 | 2.48 × 10−11 | 0.09 | 8.76 × 10−1 | Translocator protein | Melipona quadrifasciata |
contig_44603 | 24.51 | 3.57 × 10−11 | 35.70 | 8.64 × 10−14 | 0.54 | 4.32 × 10−1 | AlphaTub84B | Drosophila yakuba |
contig_65241 | 5.57 | 8.07 × 10−3 | 10.44 | 7.57 × 10−6 | 0.91 | 4.45 × 10−1 | Apoptosis-inducing factor 1 | Microplitis demolitor |
contig_71196 | 4.69 | 1.98 × 10−3 | 10.23 | 5.52 × 10−6 | 1.12 | 2.37 × 10−1 | Sterile 20-like protein | Microplitis demolitor |
contig_68453 | 51.24 | 2.28 × 10−9 | 119.92 | 1.59 × 10−22 | 1.23 | 1.37 × 10−1 | Calreticulin | Helicoverpa zea |
contig_48819 | 35.71 | 3.23 × 10−9 | 50.13 | 1.83 × 10−15 | 0.49 | 5.73 × 10−1 | Calmodulin | Cyphomyrmex costatus |
contig_69274 | 9.50 | 2.80 × 10−5 | 11.23 | 4.80 × 10−6 | 0.24 | 7.87 × 10−1 | Calcium-transporting ATPase | Helicoverpa zea |
contig_59131 | 4.97 | 8.38 × 10−5 | 8.01 | 2.31 × 10−6 | 0.69 | 4.64 × 10−1 | Calcium-transporting ATPase | Nasonia vitripennis |
contig_6088 | −9.01 | 1.23 × 10−5 | 0.60 | 7.05 × 10−1 | 9.60 | 2.03 × 10−7 | Alpha-tubulin | Ostrinia furnacalis |
contig_54342 | 6.86 | 1.47 × 10−6 | 9.86 | 3.12 × 10−8 | 0.52 | 5.20 × 10−1 | Calcium-transporting ATPase sarcoplasmic | / |
Down-regulated gene | ||||||||
contig_428 | −1.06 | 6.46 × 10−2 | −1.99 | 1.71 × 10−4 | −0.92 | 1.38 × 10−1 | Heat shock protein 21.3 | Chilo suppressalis |
contig_27582 | 4.86 | 5.74 × 10−2 | 4.60 | 2.51 × 10−4 | −0.25 | 8.86 × 10−1 | Heat shock protein 20 | Bicyclus anynana |
First_Contig3423 | 4.68 | 4.86 × 10−6 | −0.02 | 9.54 × 10−1 | −4.70 | 3.60 × 10−6 | Cuticle protein | Amyelois transitella |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.-L.; Abil, E.; Ji, R.; Du, Y.-Z.; Lu, M.-X. Transcriptomic Analysis of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Reveals Cold Tolerance Mechanisms Under Parasitism Stress. Insects 2025, 16, 907. https://doi.org/10.3390/insects16090907
Dong C-L, Abil E, Ji R, Du Y-Z, Lu M-X. Transcriptomic Analysis of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Reveals Cold Tolerance Mechanisms Under Parasitism Stress. Insects. 2025; 16(9):907. https://doi.org/10.3390/insects16090907
Chicago/Turabian StyleDong, Chuan-Lei, Elyar Abil, Rong Ji, Yu-Zhou Du, and Ming-Xing Lu. 2025. "Transcriptomic Analysis of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Reveals Cold Tolerance Mechanisms Under Parasitism Stress" Insects 16, no. 9: 907. https://doi.org/10.3390/insects16090907
APA StyleDong, C.-L., Abil, E., Ji, R., Du, Y.-Z., & Lu, M.-X. (2025). Transcriptomic Analysis of Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Reveals Cold Tolerance Mechanisms Under Parasitism Stress. Insects, 16(9), 907. https://doi.org/10.3390/insects16090907