Foraging Behaviors and Comparative Yield Effects of Bumblebee (Bombus terrestris Linnaeus) and Chinese Honeybee (Apis cerana cerana Fabricius) to Cherry (Prunus pseudocerasus ‘Hongdeng’) in Northern China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Bee Pollination in Cherry Orchards
2.3. Monitoring of Temperature, Relative Humidity, and Bee Pollination Behavior in Cherry Orchards
2.4. Investigation of the Effects of Bee Pollination on Cherry
2.5. Data Analysis
3. Results
3.1. Chinese Honeybee and Bumblebee Pollination Activities in Cherry Orchards
3.2. Pollination Behavior of Bee to Visit Flowers
3.3. Pollen Carrying Rates of Bumblebees and Chinese Honeybees
3.4. Effects of Bee Pollination on Cherry Fruit
3.5. Yield Effects of Bee Pollination on Cherry
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinod, M.; Naik, A.K.; Biradar, R.; Natikar, P.K.; Balikai, R.A. Bee pollination under organic and conventional farming systems: A review. J. Exp. Zool. India 2016, 19, 643–652. [Google Scholar]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Koetz, A.H. Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 2013, 4, 558–592. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.Y.; An, J.D. Pollen release dynamics and daily patterns of pollen-collecting activity of honeybee Apis mellifera and bumblebee Bombus lantschouensis in solar greenhouse. Insects 2019, 10, 216. [Google Scholar] [CrossRef]
- Sun, C.; Huang, J.; Wang, Y.; Zhao, X.; Su, L.; Thomas, G.W.C.; Zhao, M.; Zhang, X.; Jungreis, I.; Kellis, M.; et al. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol. Biol. Evol. 2020, 38, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Pashalidou, F.G.; Lambert, H.; Peybernes, T.; Mescher, M.C.; De Moraes, C.M. Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science 2020, 368, 881–884. [Google Scholar] [CrossRef]
- Velthuis, H.H.W.; Van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees: Behavior, Ecology, and Conservation; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Huang, J.; An, J.; Wu, J. Advantage of bumblebee as pollinator for solanum in greenhouse. Chin. Agric. Sci. Bul. 2007, 23, 5–9. [Google Scholar]
- Zhang, H.; Huang, J.; Williams, P.H.; Vaissière, B.E.; Zhou, Z.; Gai, Q.; Dong, J.; An, J. Managed bumblebees outperform honeybees in increasing peach fruit set in China: Different limiting processes with different pollinators. PLoS ONE 2015, 10, e0121143. [Google Scholar] [CrossRef]
- Huang, X.; Li, H.; Dai, X.; Wu, G.; Zhou, H.; Chen, H.; Zheng, L.; Zhai, Y. Research progress of bumblebee behavior and pollination application. Shandong Agric. Sci. 2021, 53, 130–137. [Google Scholar]
- Huang, X.; Li, H.; Chen, G.; Dai, X.; Zhai, Y.; Zheng, L.; Chen, H.; Zhu, P.; Ding, J. Pollination behavior of Bombus terristris in winter greenhouse for tomato production in northern China. Shandong Agric. Sci. 2022, 54, 111–116. [Google Scholar]
- Chen, B.; Luo, J. Research progress of the population genetic differentiation and environmental adaptation mechanisms in Apis cerana cerana (Hymenoptera:Apidae). Acta Entomol. Sin. 2023, 66, 1258–1270. [Google Scholar]
- Wang, F.; Yang, P.; Geng, J.; Xu, X. Conservation and utilization of the Chinese honeybee Apis cerana in Bejing. Chin. J. Appl. Entomol. 2007, 44, 923–927. [Google Scholar]
- Wu, J. Honeybee Science; China Agriculture Press: Beijing, China, 2012. [Google Scholar]
- Wang, H.; Li, L.; Chen, H.; Zhang, X.; Chen, L.; Zhao, H. Progress in pollination by Apis cerana cerana. Acta Entomol. Sin. 2022, 44, 84–91. [Google Scholar]
- Yu, L.; Han, S. Effect of habitat and interspecific competition on Apis cerana cerana colony distribution. Chin. J. Appl. Ecol. 2003, 14, 553–556. [Google Scholar]
- Zhao, D.; Su, X.; Hua, Q.; Tou, L.; Chen, D. The comparative studies of pollination behaviors between Apis cerana and Apis mellifera in blueberry. J. Environ. Entomol. 2019, 41, 187–192. [Google Scholar]
- Xie, L.; Xue, B.; Sun, Y.; Zhao, F.; Yin, J.; Geng, Y. The effect of pollination by honeybees on yield of oilseed rape and fatty acid composition of rapeseed. J. Bee 2011, 31, 41–43. [Google Scholar]
- Han, M.; Lai, K.; Zhao, Y.; Bai, F.; Li, Z.; Peng, W. Flower visiting behavior and pollination by honeybees in kiwifruit orchards. Chin. J. Appl. Ecol. 2020, 57, 1131–1138. [Google Scholar]
- Guo, X.; Meng, C.; Feng, J. Diversity of plants foraged by Apis cerana based on pollen composition in honey samples in several mountainous areas. Acta Ecol. Sin. 2023, 43, 9721–9732. [Google Scholar]
- Lyu, Z.; Zhou, T.; Sun, M.; Feng, M.; Guo, W.; Nie, L.; Song, Y.; Men, X.; Li, L.; Yu, Y. Exploratory comparison of flower visiting behavior and pollination ability of mason bees, bumblebees, and honey bees. J. Econ. Entomol. 2023, 116, 1949–1956. [Google Scholar] [CrossRef]
- Whitney, H.M.; Dyer, A.; Chittka, L.; Rands, S.A.; Glover, B.J. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 2008, 95, 845–850. [Google Scholar] [CrossRef]
- Ruedenauer, F.A.; Spaethe, J.; Leonhardt, S.D. How to know which food is good for you: Bumblebees use taste to discriminate between different concentrations of food differing in nutrient content. J. Exp. Biol. 2015, 218, 2233–2240. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Yuan, Y.; Wei, X.; Zhang, D.; Yao, D.; Zhang, J. Study on the flower-visiting behavior and pollination effect by Apis cerana cerana on kiwi fruit. J. Enviro. Entomol. 2021, 43, 667–675. [Google Scholar]
- Wang, Y.; Tao, H.; Tian, B.; Sheng, D.; Xu, C.; Zhou, H.; Huang, S.; Wang, P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 2018, 158, 80–88. [Google Scholar] [CrossRef]
- Li, D.F.; Tang, J.; Fan, X.D.; Chen, Y.D.; Liu, Z.; Liang, A.T.; He, Y.T.; Yan, X.C. Diurnal temperature and time affect visitation patterns of Honey bees. Sociobiology 2025, 72, e11384. [Google Scholar] [CrossRef]
- Cui, Q.; Corlett, R.T. Seasonal and diurnal patterns of activity in honeybees (Apis spp.) on the northern edge of the Asian tropics; their implications for the climate-change resilience of pollination. Trop. Conserv. Sci. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Ayasse, M.; Jarau, S. Chemical ecology of bumble bees. Annu. Rev. Entomol. 2014, 59, 299–319. [Google Scholar] [CrossRef]
- Brown, M.; Brown, M.J.F. Nectar preferences in male bumblebees. Insectes Soc. 2020, 67, 221–228. [Google Scholar] [CrossRef]
- Dyer, A.G. Bumblebee search time without ultraviolet light. J. Exp. Biol. 2004, 207, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.G.; Whitney, H.M.; Arnold, S.E.J.; Glover, B.J.; Glover, L. Behavioural ecology: Bees associate warmth with floral colour. Nature 2006, 442, 525. [Google Scholar] [CrossRef]
- Witjes, S.; Eltz, T. Influence of scent deposits on flower choice: Experiments in an artificial flower array with bumblebees. Apidologie 2007, 38, 12–18. [Google Scholar] [CrossRef]
- You, C.; Chen, D.; Wu, W. Effects of different pollination methods on yield and quality of greenhouse tomato. J. Changjiang Veg. 2020, 24, 56–58. [Google Scholar]
- Mir, M.M.; Mir, M.; Iqbal, U.; Mushtaq, I.; Rehman, M.U.; Iqbal, R.; Parveze, M.U.; Khan, S.Q.; Rather, G.H.; Banday, S.A.; et al. The impact of pollination requirements in sweet cherry: A systematic review. J. Plant Growth Regul. 2025, 44, 3425–3443. [Google Scholar] [CrossRef]
- Osterman, J.; Mateos-Fierro, Z.; Siopa, C.; Castro, H.; Castro, S.; Eeraerts, M. The impact of pollination requirements, pollinators, landscape and management practices on pollination in sweet and sour cherry: A systematic review. Agr. Ecosyst. Environ. 2024, 374, 109163. [Google Scholar] [CrossRef]
- Osterman, J.; Benton, F.; Hellström, S.; Luderer-Pflimpfl, M.; Pöpel-Eisenbrandt, A.K.; Wild, B.S.; Theodorou, P.; Ulbricht, C.; Paxton, R.J. Mason bees and honey bees synergistically enhance fruit set in sweet cherry orchards. Ecol. Evol. 2023, 13, e10289. [Google Scholar] [CrossRef] [PubMed]
- García, C.B.; Díaz-Siefer, P.; Smith-Ramírez, C.; Montero-Silva, F.; Martínez-Harms, J.; Murúa, M.; Celis-Diez, J.L. Synergistic effect of honeybees and wild floral visitors in promoting sweet cherry fruit set in central Chile. Biol. Res. 2025, 58, 39. [Google Scholar] [CrossRef] [PubMed]
- McCabe, L.M.; Boyle, N.K.; Pitts-Singer, T.L. Osmia lignaria (Hymenoptera: Megachilidae) increase pollination of Washington sweet cherry and pear crops. Environ. Entomol. 2024, 53, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, M.; Ni, X.; Wei, M. Effects of different pollination methods on fruit setting and seed yield of tomato. J. Anhui Agric. Sci. 2022, 50, 42–44. [Google Scholar]
- Eeraerts, M.; Smagghe, G.; Meeus, I. Pollinator diversity, floral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry. Agric. Ecosyst. Environ. 2019, 284, 106586. [Google Scholar] [CrossRef]
- Eeraerts, M.; Vanderhaegen, R.; Smagghe, G.; Meeus, I. Pollination efficiency and foraging behaviour of honey bees and non-Apis bees to sweet cherry. Agr. Forest Entomol. 2020, 22, 75–82. [Google Scholar] [CrossRef]
- Goulson, D.; Lye, C.G.; Darvill, B. Decline and conservation of bumblebees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Smith, D.B.; Arce, A.N.; Rodrigues, A.R.; Bischoff, P.H.; Gill, R.J. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. P. Roy Soc. B 2020, 287, 20192442. [Google Scholar] [CrossRef]
- Stanley, D.A.; Russell, A.L.; Morrison, S.J.; Rogers, C.; Raine, N.E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 2016, 53, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Muth, F.; Leonard, A.S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 2019, 9, 4764. [Google Scholar] [CrossRef]
- Bryden, J.; Gill, R.J.; Mitton, R.A.A.; Raine, N.E.; Jansen, V.A.A.; Hodgson, D. Chronic sublethal stress causes bee colony failure. Ecol. Lett. 2013, 16, 1463–1469. [Google Scholar] [CrossRef]
- Orr, M.C.; Ren, Z.X.; Ge, J.; Tian, L.; An, J.; Huang, J.; Zhu, C.D.; Williams, P.H. The rising threat of the invasive bumblebee Bombus terrestris highlights the need for sales restrictions and domestication of unique local biodiversity in Asia. Entomol. Gen. 2022, 42, 655–658. [Google Scholar] [CrossRef]
- Rendoll-Carcamo, J.A.; Contador, T.A.; Saavedra, L.; Montalva, J. First record of the invasive bumblebee Bombus terrestris (Hymenoptera: Apidae) on Navarino Island, southern Chile (55 S). J. Melittology 2017, 71, 1–5. [Google Scholar] [CrossRef]
- Otterstatter, M.C.; Thomson, J.D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS ONE 2008, 3, e2771. [Google Scholar] [CrossRef]
- Fürst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Arismendi, N.; Riveros, G.; Zapata, N.; Smagghe, G.; Gonzalez, C.; Vargas, M. Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biol. Invasions 2021, 23, 1175–1189. [Google Scholar] [CrossRef]
Pollinator | Number of Visited Flowers per Min | Single Flower Residence Time (s) | Daily Working Hours (h) |
---|---|---|---|
Honeybee | 8.8 ± 0.9 | 5.5 ± 0.6 | 9.8 ± 0.4 b |
Bumblebee | 9.6 ± 1.2 | 4.9 ± 0.4 | 10.9 ± 0.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wang, Y.; Zheng, L. Foraging Behaviors and Comparative Yield Effects of Bumblebee (Bombus terrestris Linnaeus) and Chinese Honeybee (Apis cerana cerana Fabricius) to Cherry (Prunus pseudocerasus ‘Hongdeng’) in Northern China. Insects 2025, 16, 900. https://doi.org/10.3390/insects16090900
Huang X, Wang Y, Zheng L. Foraging Behaviors and Comparative Yield Effects of Bumblebee (Bombus terrestris Linnaeus) and Chinese Honeybee (Apis cerana cerana Fabricius) to Cherry (Prunus pseudocerasus ‘Hongdeng’) in Northern China. Insects. 2025; 16(9):900. https://doi.org/10.3390/insects16090900
Chicago/Turabian StyleHuang, Xunbing, Yueyue Wang, and Li Zheng. 2025. "Foraging Behaviors and Comparative Yield Effects of Bumblebee (Bombus terrestris Linnaeus) and Chinese Honeybee (Apis cerana cerana Fabricius) to Cherry (Prunus pseudocerasus ‘Hongdeng’) in Northern China" Insects 16, no. 9: 900. https://doi.org/10.3390/insects16090900
APA StyleHuang, X., Wang, Y., & Zheng, L. (2025). Foraging Behaviors and Comparative Yield Effects of Bumblebee (Bombus terrestris Linnaeus) and Chinese Honeybee (Apis cerana cerana Fabricius) to Cherry (Prunus pseudocerasus ‘Hongdeng’) in Northern China. Insects, 16(9), 900. https://doi.org/10.3390/insects16090900