Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cuando Cubango IRS Campaign
2.3. Post-IRS Knowledge, Attitudes, and Practices Survey
2.4. Entomological Surveillance and Mosquito Collections
2.5. Morphological Identification
2.6. Molecular Species Identification of Anopheles Mosquitoes
2.7. Detection of Plasmodium falciparum Circumsporozoite Protein
2.8. Blood Meal Origin
2.9. Detection of Knockdown Resistance
2.10. Entomological Parameters and Statitical Analysis
2.11. Ethics Approval and Consent to Participate
3. Results
3.1. Cuando Cubango IRS Campaign and Knowledge, Attitudes, and Practices Survey
3.2. Anopheles Species Composition
3.3. Origin of Blood Meals
3.4. Plasmodium falciparum Infection Rate
3.5. Detection of Knockdown Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IRS | Indoor Residual Spraying |
ITN | Insecticide-Treated Nets |
KAP | Knowledge, Attitudes, and Practices |
kdr | Knockdown Resistance |
MI | The Mentor Initiative |
NMCP | National Malaria Control Program |
SA-DAC-MEES | Southern Africa Development Community Malaria Elimination Eight Secretariat |
References
- World Health Organization. World Malaria Report 2024: Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- PNCM, DNSP. Plano Estratégico Nacional de Controlo da Malária em Angola 2021–2025; Ministry of Health: Luanda, Angola, 2022.
- Tavares, W.; Morais, J.; Martins, J.F.; Scalsky, R.J.; Stabler, T.C.; Medeiros, M.M.; Fortes, F.J.; Arez, A.P.; Silva, J.C. Malaria in Angola: Recent progress, challenges and future opportunities using parasite demography studies. Malar. J. 2022, 21, 396. [Google Scholar] [CrossRef]
- Fançony, C.; Gamboa, D.; Sebastião, Y.; Hallett, R.; Sutherland, C.; Sousa-Figueiredo, J.C.; Nery, S.V. Various pfcrt and pfmdr1 genotypes of Plasmodium falciparum cocirculate with P. malariae, P. ovale spp., and P. vivax in Northern Angola. Antimicrob. Agents Chemother. 2012, 56, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, A.; Silgado, A.; Febrer-Sendra, B.; Crego-Vicente, B.; Martínez-Vallejo, P.; Maturana, C.R.; Goterris, L.; Nindia, A.; Martínez-Campreciós, J.; Aixut, S.; et al. Real-time PCR for malaria diagnosis and identification of Plasmodium species in febrile patients in Cubal, Angola. Parasites Vectors 2024, 17, 384. [Google Scholar] [CrossRef] [PubMed]
- Cuamba, N.; Kwang, S.C.; Townson, H. Malaria vectors in Angola: Distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar. J. 2006, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Calzetta, M.; Santolamazza, F.; Carrara, G.C.; Cani, P.J.; Fortes, F.; Angela, M.; Deco, D.; Della Torre, A.; Petrarca, V. Distribution and chromosomal characterization of the Anopheles gambiae complex in Angola. Am. J. Trop. Med. Hyg. 2008, 78, 169–175. [Google Scholar] [CrossRef]
- Ribeiro, H.; Ramos, H. Research on the mosquitoes of Angola. VI—The genus Anopheles Meigen, 1818 (Diptera, Culicidae). Check-list with new records, key to the females and larvae, distribution and bioecological notes. Sep. Garcia de Orta Sér. Zool. 1975, 4, 31–38. [Google Scholar]
- Alves, G.; Troco, A.D.; Seixas, G.; Pabst, R.; Francisco, A.; Pedro, C.; Garcia, L.; Martins, J.F.; Lopes, S. Molecular and entomological surveillance of malaria vectors in urban and rural communities of Benguela Province, Angola. Parasites Vectors 2024, 17, 112. [Google Scholar] [CrossRef]
- Santolamazza, F.; Calzetta, M.; Etang, J.; Barrese, E.; Dia, I.; Caccone, A.; Donnelly, M.J.; Petrarca, V.; Simard, F.; Pinto, J.; et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar. J. 2008, 7, 74. [Google Scholar] [CrossRef]
- Thomas, M.B.; Read, A.F. The threat (or not) of insecticide resistance for malaria control. Proc. Natl. Acad. Sci. USA 2016, 113, 8900. [Google Scholar] [CrossRef]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef]
- Torto, B.; Tchouassi, D.P. Grand challenges in vector-borne disease control targeting vectors. Front. Trop. Dis. 2021, 1, 635356. [Google Scholar] [CrossRef]
- National Malaria Control Programme Angola. The Mentor Initiative: A Rapid Assessment of Severe Malaria Case Management Practices and Constraints in Angola 2020; The Mentor Initiative: Luanda, Angola, 2020. [Google Scholar]
- Raman, J.; Fakudze, P.; Sikaala, C.H.; Chimumbwa, J.; Moonasar, D. Eliminating malaria from the margins of transmission in Southern Africa through the Elimination 8 Initiative. Trans. R. Soc. S. Afr. 2021, 76, 137–145. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística (INE). Resultados Definitivos do Recenseamento Geral da População e da Habitação 2014; Instituto Nacional de Estatística: Luanda, Angola, 2016. [Google Scholar]
- Mendelsohn, J. The Angolan Catchments of Northern Botswana’s Major Rivers: The Cubango, Cuito, Cuando and Zambezi Rivers. In World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2022; pp. 15–36. [Google Scholar] [CrossRef]
- SADC-MEES. Harmonized SADC Elimination Eight Regional Trainers of Trainers Guide for Indoor Residual Spraying; Elimination Eight Initiative: Luanda, Angola, 2019. [Google Scholar]
- Ribeiro, H.; Ramos, H.D. Guia ilustrado para a identificação dos mosquitos de Angola (Diptera. Culicidae). In Boletim da Sociedade Portuguesa de Entomologia; Sociedade Portuguesa de Entomologia: Lisboa, Portugal, 1995. [Google Scholar]
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef]
- Koekemoer, L.L.; Kamau, L.; Hunt, R.H.; Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am. J. Trop. Med. Hyg. 2002, 66, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Fanello, C.; Santolamazza, F.; Della Torre, A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 2002, 16, 461–464. [Google Scholar] [CrossRef]
- Scott, J.A.; Brogdon, W.G.; Collins, F.H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993, 49, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Cohuet, A.; Simard, F.; Toto, J.; Kengne, P.; Coetzee, M.; Fontenille, D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am. J. Trop. Med. Hyg. 2003, 69, 200–205. [Google Scholar] [CrossRef]
- Wirtz, R.A.; Zavala, F.; Charoenvit, Y.; Campbell, G.H.; Burkot, T.R.; Schneider, I.; Esser, K.M.; Beaudoin, R.L.; Andre, R.G. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull. World Health Organ. 1987, 65, 39. [Google Scholar]
- Durnez, L.; Van Bortel, W.; Denis, L.; Roelants, P.; Veracx, A.; Trung, H.D.; Sochantha, T.; Coosemans, M. False positive circumsporozoite protein ELISA: A challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar. J. 2011, 10, 195. [Google Scholar] [CrossRef]
- Bass, C.; Nikou, D.; Donnelly, M.J.; Williamson, M.S.; Ranson, H.; Ball, A.; Vontas, J.; Field, L.M. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: A comparison of two new high-throughput assays with existing methods. Malar. J. 2007, 6, 111. [Google Scholar] [CrossRef]
- Martinez-Torres, D.; Chandre, F.; Williamson, M.S.; Darriet, F.; Bergé, J.B.; Devonshire, A.L.; Guillet, P.; Pasteur, N.; Pauron, D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Biol. 1998, 7, 179–184. [Google Scholar] [CrossRef]
- Ranson, H.; Jensen, B.; Vulule, J.M.; Wang, X.; Hemingway, J.; Collins, F.H. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol. 2000, 9, 491–497. [Google Scholar] [CrossRef]
- Pappa, V.; Reddy, M.; Overgaard, H.J.; Abaga, S.; Caccone, A. Estimation of the Human Blood Index in Malaria Mosquito Vectors in Equatorial Guinea after Indoor Antivector Interventions. Am. J. Trop. Med. Hyg. 2011, 84, 298–301. [Google Scholar] [CrossRef]
- Burke, A.; Dandalo, L.; Munhenga, G.; Dahan-Moss, Y.; Mbokazi, F.; Ngxongo, S.; Coetzee, M.; Koekemoer, L.; Brooke, B. A new malaria vector mosquito in South Africa. Sci. Rep. 2017, 7, 43779. [Google Scholar] [CrossRef]
- Kopya, E.; Ndo, C.; Djamouko-Djonkam, L.; Nkahe, L.; Awono-Ambene, P.; Njiokou, F.; Wondji, C.S.; Antonio-Nkondjio, C.; Kopya, E.; Ndo, C.; et al. Anopheles leesoni Evans 1931, a Member of the Anopheles funestus Group, Is a Potential Malaria Vector in Cameroon. Adv. Entomol. 2022, 10, 99–109. [Google Scholar] [CrossRef]
- Kawada, H.; Dida, G.O.; Sonye, G.; Njenga, S.M.; Mwandawiro, C.; Minakawa, N. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: Some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance. Parasites Vectors 2012, 5, 230. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, T.J.; Matola, Y.G.; Charlwood, J.D. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 1996, 10, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Mwema, T.; Lukubwe, O.; Joseph, R.; Maliti, D.; Iitula, I.; Katokele, S.; Uusiku, P.; Walusimbi, D.; Ogoma, S.B.; Tambo, M.; et al. Human and vector behaviors determine exposure to Anopheles in Namibia. Parasites Vectors 2022, 15, 436. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Muleba, M.; Stevenson, J.C.; Norris, D.E. Habitat Partitioning of Malaria Vectors in Nchelenge District, Zambia. Am. J. Trop. Med. Hyg. 2016, 94, 1234. [Google Scholar] [CrossRef]
- Takken, W.; Charlwood, D.; Lindsay, S.W. The behaviour of adult Anopheles gambiae, sub-Saharan Africa’s principal malaria vector, and its relevance to malaria control: A review. Malar. J. 2024, 23, 161. [Google Scholar] [CrossRef]
- Limwagu, A.J.; Msugupakulya, B.J.; Ngowo, H.S.; Mwalugelo, Y.A.; Kilalangongono, M.S.; Samli, F.A.; Abbasi, S.K.; Okumu, F.O.; Ngasala, B.E.; Lyimo, I.N. The bionomics of Anopheles arabiensis and Anopheles funestus inside local houses and their implications for vector control strategies in areas with high coverage of insecticide-treated nets in South-eastern Tanzania. PLoS ONE 2024, 19, e0295482. [Google Scholar] [CrossRef]
- Mahande, A.; Mosha, F.; Mahande, J.; Kweka, E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar. J. 2007, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- WHO. Indoor Residual Spraying: An Operational Manual for Indoor Residual Spraying for Malaria Transmission Control and Elimination; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- García, G.A.; Hergott, D.E.B.; Galick, D.S.; Donfack, O.T.; Motobe Vaz, L.; Nze Nchama, L.O.; Mba Eyono, J.N.; Nguema Avue, R.M.; Riloha Rivas, M.; Iyanga, M.M.; et al. Testing indoor residual spraying coverage targets for malaria control, Bioko, Equatorial Guinea. Bull. World Health Organ. 2025, 103, 392. [Google Scholar] [CrossRef]
- Galick, D.S.; Vaz, L.M.; Ondo, L.; Iyanga, M.M.; Bikie, F.E.E.; Avue, R.M.N.; Donfack, O.T.; Eyono, J.N.M.; Mifumu, T.A.O.; Hergott, D.E.B.; et al. Reconsidering indoor residual spraying coverage targets: A retrospective analysis of high-resolution programmatic malaria control data. Proc. Natl. Acad. Sci. USA 2025, 122, e2421531122. [Google Scholar] [CrossRef] [PubMed]
- Erlank, E.; Koekemoer, L.L.; Coetzee, M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar. J. 2018, 17, 43. [Google Scholar] [CrossRef] [PubMed]
District | Commune | Sprayed Structures | Coverage (%) | No. People Protected |
---|---|---|---|---|
Rivungo | Rivungo sede | 2959 | 91 | 12,056 |
Luiana | 2474 | 85 | 11,201 | |
Tchipundo | 3352 | 99 | 14,777 | |
Neriquinha | 247 | 82 | 952 | |
Subtotal | 9032 | 92 | 38,986 | |
Dirico | Dirico sede | 1459 | 94 | 4725 |
Mucusso | 663 | 99 | 2683 | |
Xamavera | 976 | 88 | 3973 | |
Subtotal | 3098 | 93 | 11,381 | |
Calai | Calai Sede | 3280 | 92 | 11,576 |
Mavengue | 284 | 97 | 866 | |
Mawé | 282 | 98 | 1066 | |
Subtotal | 3846 | 92 | 13,508 | |
Cuangar | Cuangar sede | 3302 | 94 | 11,806 |
Bondo-Caila | 1608 | 88 | 6159 | |
Savate | 1801 | 91 | 5483 | |
Subtotal | 6711 | 95 | 23,448 | |
Menongue | Menongue sede | 81,584 | 96 | 301,143 |
Missombo | 1809 | 98 | 6651 | |
Caiundo | 5390 | 91 | 22,338 | |
Jamba Cueio | 1582 | 98 | 4401 | |
Subtotal | 90,365 | 96 | 334,533 | |
Total | 113,052 | 95 | 421,856 |
Collection Method | Unfed (%) | Fed (%) | Half Gravid (%) | Gravid (%) | Unknown (%) | Total (%) |
---|---|---|---|---|---|---|
CDC-LT | 396 (96.4) | 76 (58.0) | 2 (100.0) | 1 (25.0) | 1 (100.0) | 476 (86.1) |
PK | 15 (3.6) | 55 (42.0) | 0 (0.0) | 3 (75.0) | 0 (0.0) | 73 (13.3) |
Total | 411 (74.9) | 131 (23.9) | 2 (0.4) | 4 (0.7) | 1 (0.2) | 549 |
Collection Site | Collection Method | An. concolor | Funestus Group | An. gambiae Complex | An. ruarinus | An. rufipes | An. squamosus | An. spp. * | Total |
---|---|---|---|---|---|---|---|---|---|
A. Neto | CDC-LT | 0 | 210 | 0 | 0 | 0 | 0 | 2 | 212 |
PK | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 33 | |
Subtotal | 0 | 243 | 0 | 0 | 0 | 0 | 2 | 245 | |
Makua | CDC-LT | 2 | 215 | 5 | 1 | 9 | 11 | 1 | 244 |
PK | 0 | 35 | 1 | 0 | 3 | 0 | 0 | 39 | |
Subtotal | 2 | 250 | 6 | 1 | 12 | 11 | 1 | 283 | |
Cuchi | CDC-LT | 0 | 10 | 8 | 0 | 1 | 0 | 1 | 20 |
PK | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
Subtotal | 0 | 11 | 8 | 0 | 1 | 0 | 1 | 21 | |
Total (%) | 2 (0.4) | 504 (91.8) | 14 (2.6) | 1 (0.2) | 13 (2.4) | 11 (2.0) | 4 (0.7) | 549 |
Mosquito Species | N | Species-Specific PCR Identification | Sentinel Site | Total (%) | ||
---|---|---|---|---|---|---|
A. Neto | Makua | Cuchi | ||||
An. gambiae complex | 14 | An. arabiensis | 0 | 2 | 8 | 10 (71.4) |
Failed identification | 0 | 4 | 0 | 4 (28.6) | ||
Funestus group | 375 | An. funestus s.s. | 176 | 159 | 9 | 344 (91.7) |
An. leesoni | 0 | 1 | 0 | 1 (0.3) | ||
An. rivulorum | 1 | 0 | 0 | 1 (0.3) | ||
An. rivulorum-like | 0 | 1 | 0 | 1 (0.3) | ||
An. vaneedeni | 0 | 2 | 0 | 2 (0.5) | ||
Failed identification | 8 | 16 | 2 | 26 (6.9) |
Collection Sites | Pre-IRS (Nov-20 to Jan-21) | Post-IRS (Feb-21 to Mar-21) | χ2, p-Value | ||||
---|---|---|---|---|---|---|---|
No. Captures | Trapping Effort | VD | No. Captures | Trapping Effort | VD | ||
Cuchi | 1 | 61 | 0.02 | 17 | 78 | 0.22 | <0.01 |
Makua | 113 | 114 | 0.99 | 102 | 75 | 1.36 | >0.05 |
A. Neto | 195 | 96 | 2.03 | 16 | 87 | 0.18 | <0.0001 |
Collection Sites | Pre-IRS (Nov-20 to Jan-21) | Post-IRS (Feb-21 to Mar-21) | χ2, p-Value | ||||
---|---|---|---|---|---|---|---|
No. Captures | Trapping Effort | IRD | No. Captures | Trapping Effort | IRD | ||
Cuchi | 0 | 29 | 0.00 | 1 | 9 | 0.11 | >0.05 a |
Makua | 34 | 49 | 0.69 | 1 | 15 | 0.07 | <0.001 |
A. Neto | 33 | 40 | 0.83 | 0 | 20 | 0.0 | <0.001 |
Mosquito Species | Collection Site | N | Blood Meal Source | HBI | Adjusted HBI | |||
---|---|---|---|---|---|---|---|---|
Cow | Goat | Human | N/A | |||||
An. funestus s.s. | Agostinho Neto | 48 | 1 | 2 | 11 | 34 | 22.9 | 78.6 |
Makua | 54 | 6 | 0 | 8 | 40 | 14.8 | 57.1 | |
Subtotal | 102 | 7 | 2 | 19 | 74 | 18.6 | 67.9 | |
An. arabiensis | Cuchi | 3 | 1 | 0 | 1 | 1 | 33.3 | 50.0 |
Makua | 1 | 1 | 0 | 0 | 0 | 0.0 | 0.0 | |
Subtotal | 4 | 2 | 0 | 1 | 1 | 25.0 | 33.3 | |
An. rufipes | Cuchi | 1 | 1 | 0 | 0 | 0 | 0.0 | 0.0 |
Makua | 3 | 1 | 0 | 2 | 0 | 66.7 | 66.7 | |
Subtotal | 4 | 2 | 0 | 2 | 0 | 50.0 | 50.0 | |
Total (%) | 106 | 9 (8.5) | 2 (1.9) | 20 (18.9) | 75 (70.8) | - | - |
Mosquitoes | Cuchi | A. Neto | Makua | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tested | CSP+ | IR | Tested | CSP+ | IR | Tested | CSP+ | IR | Tested | CSP+ | IR% | |
An. arabiensis | 5 | 0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0.0 | 6 | 0 | 0.0 |
An. funestus s.s. | 8 | 0 | 0.0 | 128 | 12 | 9.4 | 105 | 11 | 10.5 | 241 | 23 | 9.5 |
An. rivulorum | 0 | - | - | 1 | 0 | 0.0 | 0 | - | - | 1 | 0 | 0.0 |
An. leesoni | 0 | - | - | 0 | - | - | 1 | 0 | 0.0 | 1 | 0 | 0.0 |
An. vaneedeni | 0 | - | - | 0 | - | - | 1 | 0 | 0.0 | 1 | 0 | 0.0 |
Total | 13 | 0 | 0.0 | 129 | 12 | 9.3 | 108 | 11 | 10.2 | 250 | 23 | 9.2 |
Month-Year | Collection Sites | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
A. Neto | Makua | ||||||||
Tested | Positive | IR% | Tested | Positive | IR% | Tested | Positive | IR% | |
Nov-20 | 9 | 0 | 0.0 | 4 | 0 | 0 | 13 | 0 | 0.0 |
Dec-20 | 45 | 4 | 8.9 | 9 | 0 | 0 | 54 | 4 | 7.4 |
Jan-21 | 66 | 6 | 9.1 | 44 | 8 | 18.2 | 110 | 14 | 12.7 |
Total pre-IRS | 120 | 10 | 8.3 | 57 | 8 | 14.0 | 177 | 18 | 10.2 |
Feb-21 | 8 | 2 | 25.0 | 27 | 2 | 7.4 | 35 | 4 | 11.4 |
Mar-21 | 0 | - | - | 21 | 1 | 4.8 | 21 | 1 | 4.8 |
Total post-IRS | 8 | 2 | 25.0 | 18 | 3 | 6.3 | 56 | 5 | 8.9 |
Mosquitoes | District of Collection | N | Genotype L1014F | Genotype L1014S | Resistant Allele Frequence | |||||
---|---|---|---|---|---|---|---|---|---|---|
SS | RS | RR | SS | RS | RR | F (Phe) | F (Ser) | |||
An. arabiensis | Menongue | 3 (1) | 3 | 0 | 0 | 3 (1) | 0 | 0 | 0.0 | 0.0 |
Cuchi | 33 (25) | 33 (25) | 0 | 0 | 28 (20) | 5 (5) | 0 | 0.0 | 0.076 | |
Subtotal | 36 (26) | 36 (25) | 0 | 0 | 31 (21) | 5 (5) | 0 | 0.0 | 0.069 | |
An. gambiae s.s. | Menongue | 5 (5) | 0 | 0 | 5 (5) | 5 (5) | 0 | 0 | 1.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingos, A.; Direito, A.; Alves, G.; Máquina, P.; Jorge, C.P.; Martins, J.F.; Koekemoer, L.L.; Lopes, S.; Garcia, L. Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola. Insects 2025, 16, 892. https://doi.org/10.3390/insects16090892
Domingos A, Direito A, Alves G, Máquina P, Jorge CP, Martins JF, Koekemoer LL, Lopes S, Garcia L. Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola. Insects. 2025; 16(9):892. https://doi.org/10.3390/insects16090892
Chicago/Turabian StyleDomingos, André, Ana Direito, Gonçalo Alves, Paulo Máquina, Cani P. Jorge, José F. Martins, Lizette L. Koekemoer, Sergio Lopes, and Luzala Garcia. 2025. "Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola" Insects 16, no. 9: 892. https://doi.org/10.3390/insects16090892
APA StyleDomingos, A., Direito, A., Alves, G., Máquina, P., Jorge, C. P., Martins, J. F., Koekemoer, L. L., Lopes, S., & Garcia, L. (2025). Characterization of Anopheles Species and Entomological Indicators Following Indoor Residual Spraying Campaign in Cuando Cubango, Angola. Insects, 16(9), 892. https://doi.org/10.3390/insects16090892