Bt in the Spotlight: Defending Its Relevance in an RNAi-Driven Future
Simple Summary
Abstract
1. Why Bt Endures
2. RNAi’s Rise
3. Converging Paths
4. Regulatory Hurdles
5. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Bt | Bacillus thuringiensis |
Cry | Crystal |
Vip | Vegetative insecticidal protein |
RNAi | RNA interference |
dsRNA | Double-stranded RNA |
GM | Genetically modified |
EU | The European Union |
USA | The United States of America |
EPA | Environmental Protection Agency |
GMOs | Genetically modified organisms |
References
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- Koch, M.S.; Ward, J.M.; Levine, S.L.; Baum, J.A.; Vicini, J.L.; Hammond, B.G. The food and environmental safety of Bt crops. Front. Plant Sci. 2015, 6, 283. [Google Scholar] [CrossRef]
- Lövei, G.L.; Arpaia, S. The impact of transgenic plants on natural enemies: A critical review of laboratory studies. Entomol. Exp. Appl. 2005, 114, 1–14. [Google Scholar] [CrossRef]
- Sanchis, V. From microbial sprays to insect-resistant transgenic plants: History of the biopesticide Bacillus thuringiensis: A review. Agron. Sustain. Dev. 2011, 31, 217–231. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Reisig, D.D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 2023, 68, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Fabrick, J.A.; Carrière, Y. Global patterns of insect resistance to transgenic Bt crops: The first 25 years. J. Econ. Entomol. 2023, 116, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Ragasruthi, M.; Balakrishnan, N.; Murugan, M.; Swarnakumari, N.; Harish, S.; Sharmila, D.J.S. Bacillus thuringiensis (Bt)-based biopesticide: Navigating success, challenges, and future horizons in sustainable pest control. Sci. Total Environ. 2024, 954, 176594. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Ge, L.; Hu, C.; Wu, G.; Sun, Y.; Song, L.; Wu, X.; Pan, A.; Xu, Q.; et al. Environmental behaviors of Bacillus thuringiensis (Bt) insecticidal proteins and their effects on microbial ecology. Plants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Azizoglu, U.; Salehi Jouzani, G.; Sansinenea, E.; Sanchis-Borja, V. Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Rev. Environ. Sci. Biotechnol. 2023, 22, 319–348. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Xia, B.; Li, P.; Feng, H.; Wyckhuys, K.A.; Guo, Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 2010, 328, 1151–1154. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. EPA Registers Novel Pesticide Technology for Potato Crops. EPA.gov. 22 December. Available online: https://www.epa.gov/pesticides/epa-registers-novel-pesticide-technology-potato-crops (accessed on 29 June 2025).
- Schoville, S.D.; Cohen, Z.P.; Crossley, M.S. Population genomic insights into insecticide resistance in the Colorado Potato Beetle. In Population Genomics; Rajora, O.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Whalon, M.E.; Wierenga, J.M. Bacillus thuringiensis resistant Colorado potato beetle and transgenic plants: Some operational and ecological implications for deployment. Biocontrol Sci. Technol. 1994, 4, 555–561. [Google Scholar] [CrossRef]
- GreenLight Biosciences. GreenLight Biosciences Secures EPA Registration for New Bioinsecticide Calantha: Historic Step Towards a Safer and More Sustainable Food System. 4 January. PR Newswire. Available online: https://prnewswire.com/news-releases/greenlight-biosciences-secures-epa-registration-for-new-bioinsecticide-calantha-historic-step-towards-a-safer-and-more-sustainable-food-system-302026247.html (accessed on 10 August 2025).
- Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 2010, 56, 227–235. [Google Scholar] [CrossRef]
- ISAAA. Pocket K No. 34: RNAi for Crop Improvement. International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Available online: https://www.isaaa.org/resources/publications/pocketk/34/ (accessed on 29 June 2025).
- Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.; An, C.; Aymeric, J.L.; Barthel, A.; et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245. [Google Scholar] [CrossRef]
- Rodríguez-Cabrera, L.; Trujillo-Bacallao, D.; Borrás-Hidalgo, O.; Wright, D.J.; Ayra-Pardo, C. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ. Microbiol. 2010, 12, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Arjunan, N.; Thiruvengadam, V.; Sushil, S.N. Nanoparticle-mediated dsRNA delivery for precision insect pest control: A comprehensive review. Mol. Biol. Rep. 2024, 51, 355. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, J.H.; Liu, Y.; Belles, X.; Lee, H.J. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Manag. Sci. 2017, 73, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Quilez-Molina, A.I.; Niño Sanchez, J.; Merino, D. The role of polymers in enabling RNAi-based technology for sustainable pest management. Nat. Commun. 2024, 15, 9158. [Google Scholar] [CrossRef]
- GreenLight Biosciences. GreenLight Biosciences Opens RNA Production Facility for the Next Generation of Agricultural Products. PR Newswire. Available online: https://www.prnewswire.com/news-releases/greenlight-biosciences-opens-rna-production-facility-for-the-next-generation-of-agricultural-products-301383973.html (accessed on 27 July 2025).
- Castañera, P.; Farinós, G.P.; Ortego, F.; Andow, D.A. Sixteen years of Bt maize in the EU hotspot: Why has resistance not evolved? PLoS ONE 2016, 11, e0154200. [Google Scholar] [CrossRef]
- García, M.; García-Benítez, C.; Ortego, F.; Farinós, G.P. Monitoring insect resistance to Bt maize in the European Union: Update, challenges, and future prospects. J. Econ. Entomol. 2023, 116, 275–288. [Google Scholar] [CrossRef]
- Mishra, S.; Dee, J.; Moar, W.; Dufner-Beattie, J.; Baum, J.; Dias, N.P.; Alyokhin, A.; Buzza, A.; Rondon, S.I.; Clough, M.; et al. Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci. Rep. 2021, 11, 6523. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Hodge, T.; Jensen, P.; Chen, M.; Gowda, A.; McNulty, B.; Vazquez, C.; Bolognesi, R.; Haas, J.; Head, G.; et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018, 13, e0197059. [Google Scholar] [CrossRef]
- Head, G.P.; Carroll, M.W.; Evans, S.P.; Rule, D.M.; Willse, A.R.; Clark, T.L.; Storer, N.P.; Flannagan, R.D.; Samuel, L.W.; Meinke, L.J. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: Efficacy and resistance management. Pest Manag. Sci. 2017, 73, 1883–1899. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef]
- Reinders, J.D.; Moar, W.J.; Head, G.P.; Hassan, S.; Meinke, L.J. Effects of SmartStax® and SmartStax® PRO maize on western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding injury and adult life history parameters. PLoS ONE 2023, 18, e0288372. [Google Scholar] [CrossRef]
- Ni, M.; Ma, W.; Wang, X.; Gao, M.; Dai, Y.; Wei, X.; Zhang, L.; Peng, Y.; Chen, S.; Ding, L.; et al. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 2017, 15, 1204–1213. [Google Scholar] [CrossRef]
- De Schutter, K.; Taning, C.N.T.; Van Daele, L.; Van Damme, E.J.M.; Dubruel, P.; Smagghe, G. RNAi-based biocontrol products: Market status, regulatory aspects, and risk assessment. Front. Insect Sci. 2022, 1, 818037. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.F.; Devos, Y.; Lemgo, G.N.; Zhou, X. Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Front. Plant Sci. 2015, 6, 958. [Google Scholar] [CrossRef]
- Dalakouras, A.; Koidou, V.; Papadopoulou, K. DsRNA-based pesticides: Considerations for efficiency and risk assessment. Chemosphere 2024, 352, 141530. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Duan, J.J. Gene-Silencing Pesticides Need to be Stringently Regulated. Biosafety Science. Available online: https://biosafety-info.net/articles/biosafety-science/emerging-trends-techniques/gene-silencing-pesticides-need-to-be-stringently-regulated/ (accessed on 29 July 2025).
- Vatanparast, M.; Merkel, L.; Amari, K. Exogenous application of dsRNA in plant protection: Efficiency, safety concerns and risk assessment. Int. J. Mol. Sci. 2024, 25, 6530. [Google Scholar] [CrossRef]
- Tardin-Coelho, R.; Fletcher, S.; Manzie, N.; Gunasekara, S.N.; Fidelman, P.; Mitter, N.; Ashworth, P. A systematic review on public perceptions of RNAi-based biopesticides: Developing social licence to operate. npj Sustain. Agric. 2025, 3, 15. [Google Scholar] [CrossRef]
- Bioengineer.org. Public Views Shape RNAi Biopesticides’ Social License. Available online: https://bioengineer.org/public-views-shape-rnai-biopesticides-social-license/ (accessed on 29 July 2025).
- Rinaldi, A.; Mat Jalaluddin, N.S.; Mohd Hussain, R.B.; Abdul Ghapor, A. Building public trust and acceptance towards spray-on RNAi biopesticides: Lessons from current ethical, legal and social discourses. GM Crops Food 2025, 16, 398–412. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, S.; Fidelman, P.; Fletcher, S.; Gardiner, D.; Manzie, N.; Ashworth, P.; Tardin-Coelho, R.; Mitter, N. The future of dsRNA-based biopesticides will require global regulatory cohesion. Nat. Plants 2025, 11, 664–667. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayra-Pardo, C.; Wright, D.J. Bt in the Spotlight: Defending Its Relevance in an RNAi-Driven Future. Insects 2025, 16, 837. https://doi.org/10.3390/insects16080837
Ayra-Pardo C, Wright DJ. Bt in the Spotlight: Defending Its Relevance in an RNAi-Driven Future. Insects. 2025; 16(8):837. https://doi.org/10.3390/insects16080837
Chicago/Turabian StyleAyra-Pardo, Camilo, and Denis J. Wright. 2025. "Bt in the Spotlight: Defending Its Relevance in an RNAi-Driven Future" Insects 16, no. 8: 837. https://doi.org/10.3390/insects16080837
APA StyleAyra-Pardo, C., & Wright, D. J. (2025). Bt in the Spotlight: Defending Its Relevance in an RNAi-Driven Future. Insects, 16(8), 837. https://doi.org/10.3390/insects16080837