Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Susceptible Beta vulgaris L. Var. Saccharifera Cultivation
2.2. Myzus Persicae Rearing
2.3. Transmission Tests
2.4. DC Electropenetrography
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, F.; Then, C.; Francis, A.; Gbangbo, Y.A.C.; Iannello, L.; Ben Fekih, I. Complementary Strategies for Biological Control of Aphids and Related Virus Transmission in Sugar Beet to Replace Neonicotinoids. Agriculture 2022, 12, 1663. [Google Scholar] [CrossRef]
- Zhu, Y.; Stahl, A.; Rostás, M.; Will, T. Temporal and Species-Specific Resistance of Sugar Beet to Green Peach Aphid and Black Bean Aphid: Mechanisms and Implications for Breeding. Pest Manag. Sci. 2024, 80, 404–413. [Google Scholar] [CrossRef]
- Yigezu Wendimu, G.; Kassaye Gurmu, A. Insect Vectors of Plant Viruses: Host Interactions, Their Effects, and Future Opportunities. Adv. Agric. 2024, 2024, 6006985. [Google Scholar] [CrossRef]
- Epstein, Y.; Chapron, G.; Verheggen, F. What Is an Emergency? Neonicotinoids and Emergency Situations in Plant Protection in the EU. Ambio 2022, 51, 1764–1771. [Google Scholar] [CrossRef]
- Hossain, R.; Menzel, W.; Lachmann, C.; Varrelmann, M. New Insights into Virus Yellows Distribution in Europe and Effects of Beet Yellows Virus, Beet Mild Yellowing Virus, and Beet Chlorosis Virus on Sugar Beet Yield Following Field Inoculation. Plant Pathol. 2021, 70, 584–593. [Google Scholar] [CrossRef]
- Stevens, M.; Hallsworth, P.B.; Smith, H.G. The Effects of Beet Mild Yellowing Virus and Beet Chlorosis Virus on the Yield of UK Field-Grown Sugar Beet in 1997,1999 and 2000. Ann. Appl. Biol. 2004, 144, 113–119. [Google Scholar] [CrossRef]
- Kozłowska-Makulska, A.; Beuve, M.; Syller, J.; Szyndel, M.S.; Lemaire, O.; Bouzoubaa, S.; Herrbach, E. Aphid Transmissibility of Different European Beet Polerovirus Isolates. Eur. J. Plant Pathol. 2009, 125, 337–341. [Google Scholar] [CrossRef]
- Dolja, V.V. Beet Yellows Virus: The Importance of Being Different. Mol. Plant Pathol. 2003, 4, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.; Stevens, M.; Mougel, C.; Smith, H.G.; Fritsch, C.; Herrbach, E.; Lemaire, O. Biological, Serological, and Molecular Variability Suggest Three Distinct Polerovirus Species Infecting Beet or Rape. Phytopathology 2000, 90, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Khechmar, S.; Chesnais, Q.; Villeroy, C.; Brault, V.; Drucker, M. Interplay between a Polerovirus and a Closterovirus Decreases Aphid Transmission of the Polerovirus. Microbiol. Spectr. 2024, 12, e01115-24. [Google Scholar] [CrossRef]
- Schliephake, E.; Graichen, K.; Rabenstein, F. Investigations on the Vector Transmission of the Beet Mild Yellowing Virus (BMYV) and the Turnip Yellows Virus (TuYV). J. Plant Dis. Prot. 1999, 107, 81–87. [Google Scholar]
- Hossain, R.; Willems, G.; Wynant, N.; Borgolte, S.; Govaerts, K.; Varrelmann, M. Aphid-Mediated Beet Yellows Virus Transmission Initiates Proviral Gene Deregulation in Sugar Beet at Early Stages of Infection. PLoS ONE 2024, 19, e0311368. [Google Scholar] [CrossRef]
- Fingu-Mabola, J.C.; Francis, F. Aphid–Plant–Phytovirus Pathosystems: Influencing Factors from Vector Behaviour to Virus Spread. Agriculture 2021, 11, 502. [Google Scholar] [CrossRef]
- Jiménez, J.; Tjallingii, W.F.; Moreno, A.; Fereres, A. Newly Distinguished Cell Punctures Associated with Transmission of the Semipersistent Phloem-Limited Beet Yellows Virus. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Fox, A.; Collins, L.E.; Macarthur, R.; Blackburn, L.F.; Northing, P. New Aphid Vectors and Efficiency of Transmission of Potato Virus A and Strains of Potato Virus Y in the UK. Plant Pathol. 2017, 66, 325–335. [Google Scholar] [CrossRef]
- Yu, W.; Xu, Z.; Francis, F.; Liu, Y.; Cheng, D.; Bragard, C.; Chen, J. Variation in the Transmission of Barley Yellow Dwarf Virus-PAV by Different Sitobion Avenae Clones in China. J Virol Methods 2013, 194, 1–6. [Google Scholar] [CrossRef]
- Bosquée, E.; Yin, R.L.; Bragard, C.; Yong, L.; Chen, J.L.; Francis, F. Transmission Efficiency of Cucumber Mosaic Virus by Myzus Persicae According to Virus Strain and Aphid Clone from China. Asian J. Plant Pathol. 2016, 10, 61–66. [Google Scholar] [CrossRef]
- Martín, B.; Collar, J.L.; Tjallingii, W.F.; Fereres, A. Intracellular Ingestion and Salivation by Aphids May Cause the Acquisition and Inoculation of Non-Persistently Transmitted Plant Viruses. J. Gen. Virol. 1997, 78, 2701–2705. [Google Scholar] [CrossRef]
- Moreno, A.; Tjallingii, W.F.; Fernandez-Mata, G.; Fereres, A. Differences in the Mechanism of Inoculation between a Semi-Persistent and a Non-Persistent Aphid-Transmitted Plant Virus. J. Gen. Virol. 2012, 93, 662–667. [Google Scholar] [CrossRef]
- Bennett, C. Sugar Beet Yellows Disease in the United States; USDA Technical Bulletin; Agricultural Research Service: Washington, DC, USA, 1960; p. 1218. [Google Scholar]
- Sylvester, E.S. Beet Yellows Virus Transmission by the Green Peach Aphid. J. Econ. Entomol. 1956, 49, 789–800. [Google Scholar] [CrossRef]
- Tjallingii, W.F.; Prado, E. Chapter 4—Analysis of Circulative Transmission by Electrical Penetration Graphs. In Virus-Insect-Plant Interactions; Harris, K.F., Smith, O.P., Duffus, J.E., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 69–85. ISBN 978-0-12-327681-0. [Google Scholar]
- Serteyn, L.; Ponnet, L.; Backus, E.A.; Francis, F. Characterization of Electropenetrography Waveforms for the Invasive Heteropteran Pest, Halyomorpha Halys, on Vicia Faba Leaves. Arthropod Plant Interact. 2020, 14, 113–126. [Google Scholar] [CrossRef]
- Serteyn, L.; Quaghebeur, C.; Ongena, M.; Cabrera, N.; Barrera, A.; Molina-Montenegro, M.; Francis, F.; Ramírez, C. Induced Systemic Resistance by a Plant Growth-Promoting Rhizobacterium Impacts Development and Feeding Behavior of Aphids. Insects 2020, 11, 234. [Google Scholar] [CrossRef]
- Adasme-Carreño, F.; Muñoz-Gutiérrez, C.; Salinas-Cornejo, J.; Ramírez, C.C. A2EPG: A New Software for the Analysis of Electrical Penetration Graphs to Study Plant Probing Behaviour of Hemipteran Insects. Comput. Electron. Agric. 2015, 113, 128–135. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A Brief Introduction to Mixed Effects Modelling and Multi-Model Inference in Ecology. PeerJ 2018, 2018, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means, R Package Version 1.8. 5; CRAN: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Package Lme4: Linear Mixed-Effects Models Using Eigen and S4, version 1.1-7; CRAN: Vienna, Austria, 2014. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Jiménez, J.; Moreno, A.; Fereres, A. Semipersistently Transmitted, Phloem Limited Plant Viruses Are Inoculated during the First Subphase of Intracellular Stylet Penetrations in Phloem Cells. Viruses 2021, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Mauck, K.; Bosque-Pérez, N.; Eigenbrode, S.; De Moraes, C.; Mescher, M. REVIEW: Transmission Mechanisms Shape Pathogen Effects on Host—Vector Interactions: Evidence from Plant Viruses. Funct. Ecol. 2012, 26, 1162–1175. [Google Scholar] [CrossRef]
- Yu, W.; Bosquée, E.; Fan, J.; Liu, Y.; Bragard, C.; Francis, F.; Chen, J. Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion Miscanthi. Plants 2022, 11, 3352. [Google Scholar] [CrossRef]
- Ng, J.C.K.; Falk, B.W. Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar] [CrossRef]
- Chesnais, Q.; Golyaev, V.; Velt, A.; Rustenholz, C.; Brault, V.; Pooggin, M.M.; Drucker, M. Comparative Plant Transcriptome Profiling of Arabidopsis Thaliana Col-0 and Camelina Sativa Var. Celine Infested with Myzus Persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol. Spectr. 2022, 10, e00136-22. [Google Scholar] [CrossRef]
- Caillaud, M.C.; Via, S. Quantitative Genetics of Feeding Behavior in Two Ecological Races of the Pea Aphid, Acyrthosiphon Pisum. Heredity 2012, 108, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Hu, X.S.; Keller, M.A.; Zhao, H.Y.; Wu, Y.F.; Liu, T.X. Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion Avenaeand Wheat Varieties. PLoS ONE 2014, 9, e106639. [Google Scholar] [CrossRef]
- SadeghiI, E.; Dedryver, C.A.; Gauthier, J.P. Role of Acquisition and Inoculation Time in the Expression of Clonal Variation for BYDV-PAV Transmission in the Aphid Species Rhopalosiphum Padi. Plant Pathol. 1997, 46, 502–508. [Google Scholar] [CrossRef]
- Papura, D.; Jacquot, E.; Dedryver, C.A.; Luche, S.; Riault, G.; Bossis, M.; Rabilloud, T. Two-Dimensional Electrophoresis of Proteins Discriminates Aphid Clones of Sitobion Avenae Differing in BYDV-PAV Transmission. Arch. Virol. 2002, 147, 1881–1898. [Google Scholar] [CrossRef]
- Ramírez, C.C.; Niemeyer, H.M. The Influence of Previous Experience and Starvation on Aphid Feeding Behavior. J. Insect Behav. 2000, 13, 699–709. [Google Scholar] [CrossRef]
- Walker, G.P.; Fereres, A.; Tjallingii, W.F. Guidelines for Conducting, Analyzing, and Interpreting Electrical Penetration Graph (EPG) Experiments on Herbivorous Piercing–Sucking Insects. Entomol. Exp. Appl. 2024, 172, 564–580. [Google Scholar] [CrossRef]
Myzus persicae Clone | Seeder Clone Origin |
---|---|
Myz_N | Netherlands |
Myz_S | Germany |
Myz_K | Germany |
Myz_V | Belgium |
Myz_1 | Belgium |
Myz_2 | Belgium |
Myz_SW | Denmark |
Myz_VC | Belgium and France |
Clone | BMYV | BYV |
---|---|---|
Myz_N | 92 | 29 |
Myz_S | 97 | 64 |
Myz_K | 108 | 58 |
Myz_V | 50 | 79 |
Myz_1 | 58 | 59 |
Myz_2 | 42 | 0 |
Myz_SW | 27 | 16 |
Myz_VC | 28 | 30 |
Total | 502 | 335 |
Aphid clone | BMYV | BYV |
---|---|---|
Myz_N | 79.16 ± 8.01 a | 72.86 ± 12.86 ab |
Myz_S | 63.23 ± 13.05 a | 8.83 ± 7.28 b |
Myz_K | 61.63 ± 14.16 a | 96.03 ± 2.1 a |
Myz_V | 52.78 ± 29 a | 50.29 ± 20.42 ab |
Myz_1 | 69.42 ± 13.26 a | 30.08 ± 21.32 ab |
Myz_2 | 51.52 ± 9.74 | - |
Myz_SW | 69.44 ± 30.56 a | 6.67 ± NA ab |
Myz_VC | 69.44 ± 30.56 a | 61.11 ± 27.78 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noël, G.; Glacet, L.; Then, C.; Francis, F. Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior. Insects 2025, 16, 784. https://doi.org/10.3390/insects16080784
Noël G, Glacet L, Then C, Francis F. Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior. Insects. 2025; 16(8):784. https://doi.org/10.3390/insects16080784
Chicago/Turabian StyleNoël, Grégoire, Lallie Glacet, Christiane Then, and Frédéric Francis. 2025. "Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior" Insects 16, no. 8: 784. https://doi.org/10.3390/insects16080784
APA StyleNoël, G., Glacet, L., Then, C., & Francis, F. (2025). Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior. Insects, 16(8), 784. https://doi.org/10.3390/insects16080784