Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Insect Collection
2.3. Volatile Capture from Branches and Leaves of A. araucana
2.4. Analysis of Volatile Compounds by GC-MS
2.5. Hibaene Isolation
2.6. Olfactometry
2.7. Statistical Analysis
3. Results
Olfactometric Assays
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmithüsen, J. Die Nadelhölzer in den Waldgesellschaften der südlichen Anden. Vegetatio 1960, 9, 313–327. [Google Scholar] [CrossRef]
- Montaldo, P. La Bio-Ecología de la Araucaria araucana (Mol.) Koch; Boletín Técnico; Instituto Forestal Latinoamericano de Investigación y Capacitación: Mérida, Venezuela, 1974; pp. 46–48. [Google Scholar]
- Gallia, M.C.; Bachmeier, E.; Ferrari, A.; Queralt, I.; Mazzeo, M.A.; Bongiovanni, G.A. Pehuén (Araucaria araucana) seed residues are a valuable source of natural antioxidants with nutraceutical, chemoprotective and metal corrosion-inhibiting properties. Bioorganic Chem. 2020, 104, 104175. [Google Scholar] [CrossRef] [PubMed]
- Nanavati, W.; Whitlock, C.; Outes, V.; Villarosa, G. A Holocene history of monkey puzzle tree (pehuén) in northernmost Patagonia. J. Biogeogr. 2020, 48, 833–846. [Google Scholar] [CrossRef]
- Tai, X.; Mackay, D.S.; Ewers, B.E.; Parsekian, A.D.; Baverly, D.; Speckman, H.; Brooks, P.D.; Anderegg, P.D. Plant Hydraulic Stress Explained Tree Mortality and Tree Size Explained Beetle Attack in a Mixed Conifer Forest. J. Geophys. Res. Biogeosci. 2020, 124, 3555–3568. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Férriz, M.; García-Garrido, S.; Aguín, O.; Elvira-Recuenco, M.; Hernandez-Escribano, L.; Martin-Benito, D.; Raposo, R. Synergistic abiotic and biotic stressors explain widespread decline of Pinus pinaster in a mixed forest. Sci. Total Environ. 2019, 685, 963–975. [Google Scholar] [CrossRef]
- Tesfaye, D.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef]
- Nevalainen, S.; Lindgren, M.; Pouttu, A.; Heinonen, J.; Hongisto, M.; Neuvonen, S. Extensive tree health monitoring networks are useful in revealing the impacts of widespread biotic damage in boreal forests. Environ. Monit. Assess. 2010, 168, 159–171. [Google Scholar] [CrossRef]
- Schulz, A.N.; Merch, A.M.; Asaro, C.; Coyle, D.R.; Cram, M.M.; Lucardi, R.D.; Gandhi, K.J.K. Assessment of abiotic and biotic factors associated with eastern white pine (Pinus strobus L.) dieback in the Southern Appalachian Mountains. For. Ecol. Manag. 2018, 423, 59–69. [Google Scholar] [CrossRef]
- Zapata, M.; Palma, M.A.; Aninat, M.J.; Piontelli, E. Polyphasic studies of new species of Diaporthe from native forest in Chile, with descriptions of Diaporthe araucanorum sp. nov., Diaporthe foikelawen sp. nov. and Diaporthe patagonica sp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 3379–3390. [Google Scholar] [CrossRef]
- Vélez, M.L.; Marfetán, J.A.; Salgado Salomon, M.E.; Taccari, L.E. Mortierella species from declining Araucaria araucana trees in Patagonia, Argentina. For. Pathol. 2020, 50, e12591. [Google Scholar] [CrossRef]
- Zapata, M.; Palma, M.A.; Piontelli, E. Ophiostoma pehueninum, a new species associated with Araucaria araucana in Chile. Phytotaxa 2018, 346, 93–103. [Google Scholar] [CrossRef]
- Butin, H.; Peredo, H. Hongos Parásitos en Coníferas de América del Sur con Especial Referencia a Chile; Gebrüder Borntraeger: Stuttgart, Germany, 1986. [Google Scholar]
- Balocchi, F.; Wingfield, M.J.; Ahumada, R.; Barnes, I. Pewenomyces kutranfy gen. nov. et sp. nov. causal agent of an important canker disease on Araucaria araucana in Chile. Plant Pathol. 2021, 70, 1243–1259. [Google Scholar] [CrossRef]
- Besoain, X.; Guajardo, J.; Camps, R. First Report of Diplodia mutila causing gummy canker in Araucaria araucana in Chile. Plant Dis. 2017, 1017, 1328. [Google Scholar] [CrossRef]
- Boczoń, A.; Hilszczańska, D.; Wrzosek, M.; Szcepkowski, A.; Sierota, Z. Drought in the forest breaks plant-fungi interactions. Eur. J. Forest Res. 2021, 140, 1301–1321. [Google Scholar] [CrossRef]
- Audley, J.P.; Fettig, C.J.; Munson, A.S.; Runyon, J.B.; Mortenson, L.A.; Steed, B.E.; Gibson, K.E.; Lørgensen, C.L.; McKelvey, S.R.; McMillin, J.D.; et al. Impacts of mountain pine beetle outbreaks on lodgepole pine forests in the Intermountain West, U.S., 2004–2019. For. Ecol. Manag. 2020, 475, 118403. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Hsiang, T.; Patynek, P.; Stereńczak, K.; Olejarski, I.; Oszako, T. Health Assessment and Genetic Structure of Monumental Norway Spruce Trees during A Bark Beetle (Ips typographus L.) Outbreak in the Białowieża Forest District, Poland. Forests 2020, 11, 647. [Google Scholar] [CrossRef]
- Munro, H.L.; Gandhi, K.J.; Barnes, B.F.; Montes, C.R.; Nowak, J.T.; Shepherd, W.P.; Villari, C.; Sullivan, B.T. Electrophysiological and behavioral responses Dendroctonus frontalis and D. sexdentatus (Coleoptera: Curculionidae) to resin odors of host pines (Pinus spp.). Chemoecology 2020, 30, 215–231. [Google Scholar] [CrossRef]
- Pandit, K.; Smith, J.; Quesada, T.; Villari, C.; Johnson, D.J. Association of Recent Incidence of Foliar Disease in Pine Species in the Southeastern United States with Tree and Climate Variables. Forests 2020, 11, 1155. [Google Scholar] [CrossRef]
- Kuschel, G. Curculionid (Coleoptera: Curculionoidea) fauna of Araucaria araucana. Rev. Chil. Entomol. 2000, 27, 41–51. [Google Scholar]
- Saavedra, A.; Willhite, E. Observaciones Y Recomendaciones Relacionadas con la Muerte de Ramas y Follaje (Daño Foliar de la Araucaria) en Araucaria Araucana en los Parques Nacionales del Sur—Centro De Chile; Technical Report; US Forest Service: Washington, DC, USA, 2017. [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef]
- Jamieson, M.A.; Burkle, L.A.; Manson, J.S.; Runyon, J.B.; Trowbridge, A.M.; Zientek, J. Global change effects on plant–insect interactions: The role of phytochemistry. Curr. Opin. Insect Sci. 2017, 23, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lehmanski, L.M.A.; Kandasamy, D.; Andersson, M.N.; Netherer, S.; Gomes-Alves, E.; Huang, J.; Hartmann, H. Addressing a century-old hypothesis—Do pioneer beetles of Ips typographus use volatile cues to find suitable host trees? New Phytol. 2023, 238, 1762–1770. [Google Scholar] [CrossRef]
- Hussain, A.; Rodriguz-Ramos, J.C.; Erbilgin, N. Spatial characteristics of volatile communication in lodgepole pine trees: Evidence of kin recognition and intra-species support. Sci. Total Environ. 2019, 692, 127–135. [Google Scholar] [CrossRef]
- Luo, R.; Lun, X.; Gao, R.; Wang, L.; Yang, Y.; Su, X.; Habibullah-Al-Mamun, M.; Xu, X.; Li, H.; Li, J. A Review of Biogenic Volatile Organic Compounds from Plants: Research Progress and Future Prospects. Toxics 2025, 13, 364. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 183, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G.; Clark, J.; McLean, J.; Pauson, P.L.; Watson, J.; Reed, R.I.; Tabrizi, F.M. New diterpenes from Araucaria imbricata. J. Chem. Soc. 1964, 3648–3655. [Google Scholar] [CrossRef]
- Briggs, L.H.; White, G.W. Constituents of the essential oil of Araucaria araucana. Tetrahedron 1975, 31, 1311–1314. [Google Scholar] [CrossRef]
- Parveen, N.; Taufeeq, H.M.; Khan, N.U.D. Biflavones from the Leaves of Araucaria araucana. J. Nat. Prod. 1987, 50, 332–333. [Google Scholar] [CrossRef]
- Garbarino, J.A.; Oyarzún, M.L.; Gambaro, V. Labdane diterpenes from Araucaria araucana. J. Nat. Prod. 1987, 50, 935–936. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Wu, M.Z.; Fookes, C.J.; Forster, P.I. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem. Syst. Ecol. 2000, 28, 563–578. [Google Scholar] [CrossRef]
- Pietsch, M.; König, W.A. Enantiomers of sesquiterpene and diterpene hydrocarbons in Araucaria species. Phytochem. Anal. 2000, 11, 99–105. [Google Scholar] [CrossRef]
- Schmeda-Hirschmanna, G.; Astudillo, L.; Sepúlveda, B.; Rodríguez, J.A.; Theoduloz, C.; Yáñez, T.; Palenzuela, J.A. Gastroprotective effect and cytotoxicity of natural and semisynthetic labdane diterpenes from Araucaria araucana resin. Z. Naturforsch. C 2005, 60, 511–522. [Google Scholar] [CrossRef]
- Céspedes, C.L.; Avila, J.G.; Garcia, A.M.; Becerra, J.; Flores, C.; Aqueveque, P.; Bittner, M.; Hoeneisen, M.; Martinez, M.; Silva, M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Naturforsch. C 2006, 6, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Raffa, K.F. Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J. Chem. Ecol. 2014, 40, 1–20. [Google Scholar] [CrossRef]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Kleinhentz, M.; Jactel, H.; Menassieu, P. Terpene attractant candidates of Dioryctria sylvestrella in maritime pine (Pinus pinaster) oleoresin, needles, liber, and headspace samples. J. Chem. Ecol. 1999, 25, 2741–2756. [Google Scholar] [CrossRef]
- Fan, J.; Sun, J.; Shi, J. Attraction of the Japanese pine sawyer, Monochamus alternatus, to volatiles from stressed host in China. Ann. For. Sci. 2007, 64, 67–71. [Google Scholar] [CrossRef]
- Gray, C.A.; Runyon, J.B.; Jenkins, M.J.; Giunta, A.D. Mountain pine beetles use volatile cues to locate host limber pine and avoid non-host Great Basin bristlecone pine. PLoS ONE 2015, 10, e0135752. [Google Scholar] [CrossRef]
- Keeling, C.I.; Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef]
- Jirošová, A.; Kalinová, B.; Modlinger, R.; Jakuš, R.; Unelius, C.R.; Blaženec, M.; Schlyter, F. Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle Ips typographus: Novel potency for females. Pest Manag. Sci. 2022, 78, 1992–1999. [Google Scholar] [CrossRef]
- Adamczyk, S.; Adamczyk, B.; Kitunen, V.; Smolander, A. Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil. Soil Biol. Biochem. 2015, 87, 59–66. [Google Scholar] [CrossRef]
- Ganteaume, A.; Romero, B.; Fernández, C.; Ormeño, E.; Lecareux, C. Volatile and semi-volatile terpenes impact leaf flammability: Differences according to the level of terpene identification. Chemoecology 2021, 31, 259–275. [Google Scholar] [CrossRef]
- Giunta, A.D.; Runyon, J.B.; Jenkins, M.J.; Teich, M. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack. Environ. Entomol. 2016, 45, 920–929. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Willy & Sons: Toronto, ON, Canada, 1974; pp. 47–54. [Google Scholar]
- Barrios-San Martín, J.; Quiroz, A.; Verdugo, J.A.; Parra, L.; Hormazábal, E.; Astudillo, L.A.; Rojas-Herrera, M.; Ramírez, C.C. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids. J. Econ. Entomol. 2014, 107, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Parra, L.; Mutis, A.; Ceballos, R.; Pardo, F.; Perich, F.; Quiroz, A. Volatiles released from Vaccinium corymbosum L. were attractive to Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae) in an olfactometric bioassay. Environ. Entomol. 2009, 38, 781–789. [Google Scholar] [CrossRef]
- Quiroz, A.; Fuentes-Contreras, E.; Ramírez, C.C.; Russell, G.B.; Niemeyer, H.M. Host plant chemicals and the distribution of Neuquenaphis (Hemiptera: Aphididae) on Nothofagus (Fagaceae). J. Chem. Ecol. 1999, 25, 1043–1054. [Google Scholar] [CrossRef]
- Kováts, E.; Keulemans, A.I.M. The Kováts retention index system. Anal. Chem. 1964, 36, 31A–41A. [Google Scholar]
- Pesyna, G.M.; Venkataraghavan, R.; Dayringer, H.E.; McLafferty, F.W. Probability based matching system using a large collection of reference mass spectra. Anal. Chem. 1976, 48, 1362–1368. [Google Scholar] [CrossRef]
- Yasutomi, R.; Anzawa, R.; Urakawa, M.; Usuki, T. Effective Extraction of Limonene and Hibaene from Hinoki (Chamaecyparis obtusa) Using Ionic Liquid and Deep Eutectic Solvent. Molecules 2021, 26, 4271. [Google Scholar] [CrossRef]
- Espinoza, J.; Urzúa, A.; Bardehle, L.; Quiroz, A.; Echeverría, J.; González-Teuber, M. Antifeedant Effects of Essential Oil, Extracts, and Isolated Sesquiterpenes from Pilgerodendron uviferum (D. Don) Florin Heartwood on Red Clover Borer Hylastinus obscurus (Coleoptera: Curculionidae). Molecules 2018, 23, 1282. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guise, M.; Nicoletti, M.; et al. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—A review. Plants 2020, 9, 888. [Google Scholar] [CrossRef]
- Abdelhameed, M.F.; Asaad, G.F.; Ragab, T.I.; Ahmed, R.F.; El Gendy, A.E.N.G.; Abd El-Rahman, S.S.; Elgamal, A.B.; Elshamy, A.I. Oral and topical anti-inflammatory and antipyretic potentialities of Araucaria bidiwillii shoot essential oil and its nanoemulsion in relation to chemical composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Bozsik, G.; Molnár, B.P.; Domingue, M.J.; Szőcs, G. Changes to volatile profiles of arborvitae, Thuja occidentalis, from drought and insect infestation: Olfactory cues for the cypress bark beetle, Phloeosinus aubei. Chemoecology 2023, 33, 113–124. [Google Scholar] [CrossRef]
- Smith, Z.M.; Chase, K.D.; Takagi, E.; Kees, A.M.; Aukema, B.H. Colonization and reproduction of potential competitors with mountain pine beetle in baited logs of a new host for mountain pine beetle, jack pine. For. Ecol. Manag. 2021, 497, 119455. [Google Scholar] [CrossRef]
- Kohnle, U. Host and non-host odour signals governing host selection by the pine shoot beetle, Tomicus piniperda and the spruce bark beetle, Hylurgops palliatus (Col., Scolytidae). J. Appl. Entomol. 2004, 128, 588–592. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Chatani, S.; Nakatsuka, S.; Kusumoto, D.; Kubota, K.; Utsumi, Y.; Enoki, T.; Tani, A.; Hiura, T. Volatile diterpene emission from dominant conifers in Japan. Biogeosci. Discuss. 2011, 8, 6681–6700. [Google Scholar] [CrossRef]
- Berasategui, A.; Salem, H.; Paetz, C. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 2017, 26, 4099–4110. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaca, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 2, 6477–6497. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, D.; Zhou, S.; Mao, Z.; Fan, J. Identification of attractants from three host plants and how to improve attrac-tiveness of plant volatiles for Monochamus saltuarius. Plants 2024, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Faccoli, M.; Anfora, G.; Tasin, M. Responses of the Mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles. J. Chem. Ecol. 2008, 34, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Panzavolta, T.; Bracalini, M.; Bonuomo, L.; Croci, F.; Tiberi, R. Field response of non-target beetles to Ips sexdentatus aggregation pheromone and pine volatiles. J. Appl. Entomol. 2014, 138, 586–599. [Google Scholar] [CrossRef]
- Bozsik, G.; Tröger, A.; Francke, W.; Szőcs, G. Thuja occidentalis: Identification of volatiles and electroantennographic response by the invasive cedar bark beetle, Phloeosinus aubei. J. Appl. Entomol. 2016, 140, 434–443. [Google Scholar] [CrossRef]
- Petterson, E.M. Volatile attractants from three Pteromalid parasitoids attacking concealed spruce bark beetle. Chemoecology 2001, 11, 89–95. [Google Scholar] [CrossRef]
- Bakó, E.; Böszörményi, A.; Vargáné Szabó, B.; Engh, M.A.; Hegyi, P.; Ványolós, A.; Csupor, D. Chemometric analysis of monoterpenes and sesquiterpenes of conifers. Front. Plant Sci. 2024, 15, 1392539. [Google Scholar] [CrossRef]
- Zorić, M.; Kostić, S.; Kladar, N.; Božin, B.; Vasić, V.; Kebert, M.; Orlović, S. Phytochemical Screening of Volatile Organic Compounds in Three Common Coniferous Tree Species in Terms of Forest Ecosystem Services. Forests 2021, 12, 928. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of pine monoterpenes to mountain pine beetle. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef]
- Ghimire, R.P.; Kivimäenpää, M.; Blomqvist, M.; Holopainen, T.; Lyytikäinen-Saarenmaa, P.; Holopainen, J.K. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees. Atmos. Environ. 2016, 126, 145–152. [Google Scholar] [CrossRef]
- Duduman, M. Field response of the northern spruce bark beetle Ips duplicatus (Sahlberg)(Coleoptera: Curculionidae, Scolytinae) to different combinations of synthetic pheromone with (−)-α-pinene and (+)-limonene. Agric. For. Entomol. 2014, 16, 102–109. [Google Scholar] [CrossRef]
- López, S.; Quero, C.; Iturrondobeitia, J.C.; Guerrero, Á.; Goldarazena, A. Electrophysiological and behavioural responses of Pityophthorus pubescens (Coleoptera: Scolytinae) to (E,E)-α-farnesene, (R)-(+)-limonene and (S)-(−)-verbenone in Pinus radiata (Pinaceae) stands in northern Spain. Pest. Manag. Sci. 2013, 69, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Peña, E.; Hidalgo, M.; Langdon, B.; Pauchard, A. Patterns of spread on Pinus contorta Dougl. Ex Loud. invasion in a Natural Reserve in South America. For. Ecol. Manag. 2008, 256, 1049–1054. [Google Scholar] [CrossRef]
- Sukuvata, L.; Jaworski, T.; Plewa, R. Effectiveness of different lures for attracting Ips acuminatus (Coleoptera: Curculionidae: Scolytinae). Agric. For. Entomol. 2020, 23, 154–162. [Google Scholar] [CrossRef]
RT | KIexp | KIlit | Compound | Concentration (ng g−1) | |
---|---|---|---|---|---|
Healthy | Unhealthy | ||||
9.27 | 922 | 914 | Tricyclene | 11.2 ± 4.8 | 8.2 ± 7.4 |
9.63 | 935 | 938 | α-Pinene | 47.3 ± 21.2 | 68.3 ± 61.6 |
10.01 | 948 | 953 | Camphene | 2.4 ± 1.0 | - |
10.9 | 976 | 976 | Sabinene | 2.7 ± 2.6 | - |
10.91 | 976 | 980 | β-Pinene | 2.7 ± 3.4 | 7.4 ± 11.6 |
12.08 | 1038 | 1013 | Myrcene | 368.3 ± 632.5 | - |
13.82 | 1072 | 1033 | Limonene | 4.0 ± 5.6 | 3.6 ± 3.1 |
15.79 | 1138 | 1143 | Camphor | 21.4 ± 17.0 | 61.2 ± 19.3 |
21.67 | 1349 | 1339 | δ-Elemene | 24.0 ± 41.5 | 5.2 ± 9.0 |
22.64 | 1385 | 1377 | α-Copaene | 29.0 ± 38.2 | 50.5 ± 31.5 |
23.02 | 1399 | 1392 | β-Elemene | 24.0 ± 41.5 | 5.3 ± 9.1 |
23.30 | 1411 | 1408 | 7-epi-Sesquithujene | - | 5.0 ± 8.4 |
23.70 | 1428 | 1419 | Caryophyllene | 65.1 ± 21.6 | 64.6 ± 40.4 |
23.99 | 1440 | 1435 | γ-Elemene | 25.3 ± 43.8 | - |
24.02 | 1441 | 1438 | α-Bergamotene | 8.9 ± 14.2 | 24.4 ± 29.4 |
24.46 | 1459 | 1455 | Humulene | 52.3 ± 18.0 | 44.0 ± 30.8 |
24.51 | 1460 | 1459 | Sesquisabinene | - | 5.1 ± 8.9 |
25.05 | 1482 | 1492 | Epicubebol | - | 5.2 ± 9.0 |
25.15 | 1486 | 1446 | cis-β-Farnesene | 3.6 ± 6.3 | 15.8 ± 15.8 |
25.19 | 1487 | 1432 | β-Copaene | 24.2 ± 41.9 | - |
25.26 | 1490 | 1480 | Germacrene D | 5.2 ± 9.1 | 10.6 ± 18.4 |
26.00 | 1521 | 1513 | γ-Cadinene | 24.2 ± 41.9 | 20.6 ± 23.2 |
26.22 | 1531 | 1529 | β-Cadinene | - | 28.7 ± 25.2 |
26.41 | 1539 | 1509 | β-Bisabolene | 49.9 ± 22.9 | 47.8 ± 43.3 |
34.93 | 1938 | 1933 | Hibaene | 82.3 ± 57.8 | 140.7 ± 77.2 |
35.67 | 1977 | - | Verticiol | - | 17.4 ± 16.6 |
36.03 | 1995 | 1989 | Trachylobane | 46.4 ± 22.8 | 54.9 ± 21.1 |
36.44 | 2018 | 2015 | Manoyl oxide | 27.8 ± 39.0 | 35.9 ± 38.7 |
36.85 | 2041 | - | Atiserene | 18.3 ± 31.7 | 31.3 ± 40.4 |
36.94 | 2046 | - | Kaurene | 52.4 ± 19.0 | 37.4 ± 35.3 |
Total amount | 1022.9 | 799.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aniñir, W.; Bardehle, L.; Montalva, C.; Quiroz, A.; Espinoza, J. Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae). Insects 2025, 16, 712. https://doi.org/10.3390/insects16070712
Aniñir W, Bardehle L, Montalva C, Quiroz A, Espinoza J. Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae). Insects. 2025; 16(7):712. https://doi.org/10.3390/insects16070712
Chicago/Turabian StyleAniñir, Washington, Leonardo Bardehle, Cristian Montalva, Andrés Quiroz, and Javier Espinoza. 2025. "Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae)" Insects 16, no. 7: 712. https://doi.org/10.3390/insects16070712
APA StyleAniñir, W., Bardehle, L., Montalva, C., Quiroz, A., & Espinoza, J. (2025). Effect of Volatile Organic Compounds from Branches of Healthy and Unhealthy Araucaria araucana (Molina) K. Koch Trees on Host Selection by Bark Beetle Sinophloeus porteri (Coleoptera: Curculionidae). Insects, 16(7), 712. https://doi.org/10.3390/insects16070712