Diversity and Functional Potential of Gut Bacteria Associated with the Insect Arsenura armida (Lepidoptera: Saturniidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Larvae Collection of A. armida
2.2. Isolation of Bacteria from the Gut of A. armida
2.3. Culture-Independent Characterization of GUT Bacteria from A. armida
2.4. Statistical Analysis
2.5. Functional Predictions of the Bacterial Community
2.6. Culture-Dependent Characterization of Bacteria Isolated from A. armida
2.7. Cellulolytic Enzyme Production Capacity
2.8. Cellulase Activity Assay
3. Results
3.1. Morphometric Characteristics of A. armida Larvae
3.2. Bacterial Community Structure Associated with the Gut of A. armida
3.3. Alpha Diversity of the GUT Microbiota Associated with A. armida Larvae
3.4. Functional Metabolic Potential of the Gut Microbiota in A. armida Larvae
3.5. Diversity and Genetic Identification of Bacterial Isolates from the Gut of A. armida
3.6. Cellulase Activity of Bacterial Strains Isolated from the Gut of A. armida
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkey, K.; Lopez-Viso, C.; Brameld, J.; Parr, T.; Salter, A. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2020, 9, 333–354. [Google Scholar] [CrossRef]
- De Carvalho, N.M.; Madureira, A.R.; Pintado, M.E. The Potential of Insects as Food Sources—A Review. Crit. Rev. Food Sci. Nutr. 2019, 60, 3642–3652. [Google Scholar] [CrossRef]
- Hurd, K.J.; Shertukde, S.; Toia, T.; Trujillo, A.; Pérez, R.L.; Larom, D.L.; Love, J.J.; Liu, C. The Cultural Importance of Edible Insects in Oaxaca, Mexico. Ann. Entomol. Soc. Am. 2019, 112, 552–559. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Moreno, J.; Vázquez, A.I.; Landero, I.; Oliva-Rivera, H.; Camacho, V.H.M. Edible Lepidoptera in Mexico: Geographic Distribution, Ethnicity, Economic, and Nutritional Importance for Rural People. J. Ethnobiol. Ethnomed. 2011, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Molina-Nery, M.C.; Ruiz-Montoya, L.; Castro-Ramírez, A.E.; González-Díaz, A.A.; Roque, A.C. The Effect of Agricultural Management on the Distribution and Abundance of Arsenura armida (Lepidoptera: Saturniidae) in Chiapas, Mexico. J. Lepid. Soc. 2017, 71, 236–248. [Google Scholar] [CrossRef]
- Melo-Ruíz, V.; Quirino-Barreda, T.; Macín-Cabrera, S.; Sánchez-Herrera, K.; Díaz-García, R.; Gazga-Urioste, C. Nutraceutical Effect of Cuetlas (Arsenura armida C.) Edible Insects as Local Food at Ixcaquixtla, Mexico. J. Agric. Sci. Technol. A 2016, 6, 423–428. [Google Scholar] [CrossRef]
- Pino-Moreno, J.M.; Reyes, -P.H.; Ángeles-C, S.C.; García-Pérez, A. Comparative analysis of the nutritional value of the cuetla (Arsenura armida C 1779) (Lepidoptera: Saturniidae) with some conventional foods. In Entomología Mexicana; Sociedad Mexicana de Entomología: Tamaulipas, México, 2015; Volume 2, pp. 744–748. [Google Scholar]
- Moreno, J.M.P.; Reyes-Prado, H.; Nonaka, K. Taxonomic, Economic, and Gastronomic Analysis of Some Edible Insects of the Order Hemiptera from Mexico. J. Insects Food Feed 2022, 8, 721–732. [Google Scholar] [CrossRef]
- Landero-Torres, I.; Oliva-Rivera, H.; Galindo-Tovar, M.E.; Balcazar-Lara, M.A.; Murguía-González, J.; Ramos-Elorduy, J. Use of the larva of Arsenura armida (Cramer, 1779) (Lepidoptera: Saturniidae), “Cuecla”, in Ixcohuapa, Veracruz, Mexico. Cuad. De Biodivers. 2012, 38, 4–8. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Wang, M.; Wang, L.; Liu, X.; Gao, C.; Ren, L.; Luo, Y. Gut Structure and Microbial Communities in Sirex noctilio (Hymenoptera: Siricidae) and Their Predicted Contribution to Larval Nutrition. Front. Microbiol. 2021, 12, 641141. [Google Scholar] [CrossRef]
- Reyes, H.; Pino-Moreno, J.M.; García Flores, A. Ethnoentomological Study of the “Cuetla” (Arsenura armida C. 1779) (Lepidoptera: Saturniidae) in the Eastern Region of the State of Morelos. Entomol. Mex. 2015, 2, 749–755. [Google Scholar]
- Ramos-Elorduy, J.; Landero-Torres, I.; Murguía-González, J.; Pino-Moreno, J.M. Anthroentomophagic Biodiversity of the Zongolica Region, Veracruz, Mexico. Rev. Biol. Trop. 2008, 56, 303–316. [Google Scholar] [PubMed]
- Cortazar-Moya, S.; Mejía-Garibay, B.; López-Malo, A.; Morales-Camacho, J.I. Nutritional Composition and Techno-Functionality of Non-Defatted and Defatted Flour of Edible Insect Arsenura armida. Food Res. Int. 2023, 173 Pt 2, 113445. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Lu, X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022, 10, 1234. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Hongoh, Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci. Biotechnol. Biochem. 2010, 74, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Scharf, M.E.; Karl, Z.J.; Sethi, A.; Boucias, D.G. Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS ONE 2011, 6, e21709. [Google Scholar] [CrossRef]
- Dantur, K.I.; Enrique, R.; Welin, B.; Castagnaro, A. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 2015, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Prem Anand, A.A.; Vennison, S.J.; Sankar, S.G.; Gilwax Prabhu, D.I.; Vasan, P.T.; Raghuraman, T.; Jerome Geoffrey, C.; Vendan, S.E. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin, and starch and their impact on digestion. J. Insect Sci. 2010, 10, 107. [Google Scholar] [CrossRef]
- Morales-Jiménez, J.; Zúñiga, G.; Ramírez-Saad, H.C.; Hernández-Rodríguez, C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 2013, 64, 268–278. [Google Scholar] [CrossRef]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Wu, D.D.; Shi, Z.B.; Yang, J.; Zhang, G.C.; Zhang, J. Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores. Arch. Insect Biochem. Physiol. 2020, 104, e21676. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, J.; Huang, X.; Guan, B.; Feng, Q.; Deng, H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front. Microbiol. 2023, 14, 1237684. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Moran, N.A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 2014, 23, 1473–1496. [Google Scholar] [CrossRef]
- Mika, N.; Zorn, H.; Rühl, M. Insect-Derived Enzymes: A Treasure for Industrial Biotechnology and Food Biotechnology. In Yellow Biotechnology II; Vilcinskas, A., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 136. [Google Scholar] [CrossRef]
- Gomes, A.F.F.; Omoto, C.; Cônsoli, F.L. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 2020, 93, 833–851. [Google Scholar] [CrossRef]
- Rincón-Molina, C.I.; Martínez-Romero, E.; Aguirre-Noyola, J.L.; Manzano-Gómez, L.A.; Zenteno-Rojas, A.; Rogel, M.A.; Rincón-Molina, F.A.; Ruíz-Valdiviezo, V.M.; Rincón-Rosales, R. Bacterial Community with Plant Growth-Promoting Potential Associated to Pioneer Plants from an Active Mexican Volcanic Complex. Microorganisms 2022, 10, 1568. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R, Version 1.4.1717; RStudio, Inc.: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 1 July 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 1 July 2025).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Gen-Jiménez, A.; Flores-Félix, J.D.; Rincón-Molina, C.I.; Manzano-Gomez, L.A.; Rogel, M.A.; Ruíz-Valdiviezo, V.M.; Rincón-Molina, F.A.; Rincón-Rosales, R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front. Microbiol. 2023, 14, 1235930. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Aßhauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, F.J. Use of Repetitive (Repetitive Extragenic Palindromic and Enterobacterial Repetitive Intergeneric Consensus) Sequences and the Polymerase Chain Reaction to Fingerprint the Genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 1992, 58, 2180–2187. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Flores-Félix, J.D. Caracterización Molecular y Funcional de Biofertilizantes Bacterianos, y Análisis de su Potencial para Mejorar la Producción de Cultivos de Maíz, Guisante, Lechuga, Fresa y Zanahoria. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2018. [Google Scholar] [CrossRef]
- García-Fraile, P.; Carro, L.; Robledo, M.; Ramírez-Bahena, M.-H.; Flores-Félix, J.-D.; Fernández, M.T.; Mateos, P.F.; Rivas, R.; Igual, J.M.; Martínez-Molina, E.; et al. Rhizobium Promotes Non-Legume Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans. PLoS ONE 2012, 7, e38122. [Google Scholar] [CrossRef]
- Yang, W.; Meng, F.; Peng, J.; Han, P.; Fang, F.; Ma, L.; Cao, B. Isolation and Identification of a Cellulolytic Bacterium from the Tibetan Pig’s Intestine and Investigation of Its Cellulase Production. Electron. J. Biotechnol. 2014, 17, 262–267. [Google Scholar] [CrossRef]
- Devi, S.; Sarkhandia, S.; Mahajan, R.; Saini, H.S.; Kaur, S. Culturable bacteria associated with different developmental stages of Spodoptera litura (Fabricius) and their functional role. Int. J. Trop. Insect Sci. 2022, 42, 2995–3008. [Google Scholar] [CrossRef]
- Hammer, T.J.; Janzen, D.H.; Hallwachs, W.; Jaffe, S.P.; Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 2017, 114, 9641–9646. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.F.; Li, C.; Xu, J.; Liu, J.H.; Ye, H. Male accessory gland secretions modulate female post-mating behavior in the moth Spodoptera litura. J. Insect Behav. 2014, 27, 105–116. [Google Scholar] [CrossRef]
- Chen, B.; Teh, B.S.; Sun, C.; Hu, S.; Lu, X.; Boland, W.; Shao, Y. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 2016, 6, 29505. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhao, J.; Dong, Z.; Shao, T. Gut microbiota of Ostrinia nubilalis larvae degrade maize cellulose. Front. Microbiol. 2022, 13, 816954. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Nguyen, N.H.; Karaoz, U.; Gross, S.R.; Herman, D.J.; Andersen, G.L.; Bruns, T.D.; Pett-Ridge, J.; Blackwell, M.; Brodie, E.L. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J. 2014, 8, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Olivier, G.A. Entomologie Oder Naturgeschichte der Insekten mit ihren Gattungs und Artmerkmalen, ihrer Beschreibung und Synonymie: Käfer; Reichard: Braunschweig, Germany, 1800; Volume 1. [Google Scholar]
- Tholen, A.; Schink, B.; Brune, A. The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol. Ecol. 1997, 24, 137–149. [Google Scholar] [CrossRef]
- Suen, G.; Scott, J.J.; Aylward, F.O.; Adams, S.M.; Tringe, S.G.; Pinto-Tomás, A.A.; Foster, C.E.; Pauly, M.; Weimer, P.J.; Barry, K.W.; et al. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 2010, 6, e1001129. [Google Scholar] [CrossRef]
- Jones, R.T.; Sanchez, L.G.; Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 2013, 8, e61218. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef]
- Gupta, K.; Dhawan, R.; Kajla, M.; Misra, T.; Kumar, S.; Gupta, L. The evolutionary divergence of STAT transcription factor in different Anopheles species. Gene 2017, 596, 89–97. [Google Scholar] [CrossRef]
- Patino-Navarrete, R.; Piulachs, M.D.; Belles, X.; Moya, A.; Latorre, A.; Peretó, J. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol. Lett. 2014, 10, 20140407. [Google Scholar] [CrossRef]
- Bonelli, M.; Bruno, D.; Caccia, S.; Sgambetterra, G.; Cappellozza, S.; Jucker, C.; Tettamanti, G.; Casartelli, M. Structural and functional characterization of Hermetia illucens larval midgut. Front. Physiol. 2019, 10, 204. [Google Scholar] [CrossRef]
- Li, K.; Li, W.J.; Liang, K.; Li, F.F.; Qin, G.Q.; Liu, J.H.; Zhang, Y.-L.; Li, X.J. Gut microorganisms of Locusta migratoria in various life stages and its possible influence on cellulose digestibility. mSystems 2024, 9, e00600-24. [Google Scholar] [CrossRef]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef]
- Geib, S.M.; Filley, T.R.; Hatcher, P.G.; Hoover, K.; Carlson, J.E.; Jimenez-Gasco, M.D.; Nakagawa-Izumi, A.; Sleighter, R.L.; Tien, M. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. USA 2008, 105, 12932–12937. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Tokuda, G.; Osaki, H.; Mikaelyan, A. Reevaluating symbiotic digestion in cockroaches: Unveiling the hindgut’s contribution to digestion in wood-feeding Panesthiinae (Blaberidae). Insects 2023, 14, 768. [Google Scholar] [CrossRef] [PubMed]
- MsangoSoko, K.; Bhattacharya, R.; Ramakrishnan, B.; Sharma, K.; Subramanian, S. Cellulolytic activity of gut bacteria isolated from the eri silkworm larvae, Samia ricini (Lepidoptera: Saturniidae). Int. J. Trop. Insect Sci. 2021, 41, 2785–2794. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Saber, M.A.; Tripty, I.A.; Karim, M.A.; Islam, M.A.; Hasan, M.S.; Alam, A.S.M.R.U.; Jahid, M.I.K.; Hasan, M.N. Molecular characterization of cellulolytic (endo- and exoglucanase) bacteria from the largest mangrove forest (Sundarbans), Bangladesh. Ann. Microbiol. 2020, 70, 68. [Google Scholar] [CrossRef]
- Borah, P.; Das, P.; Bordoloi, R.; Deori, S.; Chutia, B.C.; Dutta, R.; Baruah, C. Potential of probiotic bacteria to improve silk production: Boosting the sericulture industry in Northeast India. J. Appl. Nat. Sci. 2024, 16, 1431–1443. [Google Scholar] [CrossRef]
Sample Source | No. of Isolates | No. of Groups ARDRA Profiles a | Relative Abundance (%) | Shannon–Weaver Index b | |
---|---|---|---|---|---|
Richness (d) | Diversity (H) | ||||
Foregut | 37 | 7 | 38.89 | 4.77 | 2.12 |
Midgut | 43 | 8 | 44.45 | 5.57 | 2.48 |
Hindgut | 16 | 3 | 16.67 | 1.59 | 0.70 |
Total | 96 | 18 | 100 |
Strain | Accession Number | Closest NCBI Match/Species Identity (%) | Gut Section | Phylum |
---|---|---|---|---|
Pseudomonas sp. AAT01 | KX389675 | Pseudomonas putida L3 (KT767824)/99.0 a | (FG) | Pseudomonadota |
Enterococcus sp. AAT02 | KX389697 | Enterococcus casseliflavus (AF039903)/98.4 | (FG) | Bacillota |
Enterobacter sp. AAT03 | KX389696 | Enterobacter cloacae RCB970 (KT261182)/99.0 | (FG) | Pseudomonadota |
Bacillus sp. AAT04 | KX389689 | Bacillus odysseyi 34hs1 (AF526913)/88.7 | (FG) | Bacillota |
Bacillus sp. AAT05 | KX389692 | Bacillus subterraneus DSM13966T (FR733689)/97.6 | (FG) | Bacillota |
Serratia sp. AAT06 | KX389674 | Serratia marcescens RK26 (KC790279)/99.0 | (FG) | Pseudomonadota |
Enterobacter sp. AAT07 | KX389687 | Enterobacter ludwigii RCB31 (KT260531)/98.0 | (FG) | Pseudomonadota |
Serratia sp. AAM08 | KX389672 | Serratia marcescens KRED (AB061685)/99.5 | (MG) | Pseudomonadota |
Serratia sp. AAM09 | KX389698 | Serratia marcescens DSM 30121 (AJ233431)/97.8 | (MG) | Pseudomonadota |
Enterobacter sp. AAM10 | KX389686 | Enterobacter asburiae R23 (KM019904)/93.0 | (MG) | Pseudomonadota |
Serratia sp. AAM11 | KX389699 | Serratia marcescens KRED (AB061685)/96.8 | (MG) | Pseudomonadota |
Serratia sp. AAM12 | KX389673 | Serratia marcescens IARI-UPS 20 (KT441074)/99.0 | (MG) | Pseudomonadota |
Bacillus sp. AAM13 | KX389694 | Bacillus subterraneus DSM13966T (FR733689)/96.7 | (MG) | Bacillota |
Leclercia sp.AAM14 | KX389695 | Leclercia adecarboxylata LMG 2803 (GQ856082)/95.3 | (MG) | Pseudomonadota |
Serratia sp. AAM18 | KX827626 | Serratia marcescens KRED (AB061685)/98.1 | (MG) | Pseudomonadota |
Serratia sp. AAP15 | KX827623 | Serratia marcescens H01-A (AJ297996)/99.6 | (HG) | Pseudomonadota |
Enterobacter sp. AAP16 | KX827624 | Enterobacter asburiae JCM6051T (AB004744)/94.3 | (HG) | Pseudomonadota |
Acinetobacter sp. AAP17 | KX827625 | Acinetobacter guillouiae DSM 590T (X81659)/98.4 | (HG) | Pseudomonadota |
Isolated Gut Section | Strain | Cellulolytic Activity | Clear Zone Diameter (mm) | Reducing Sugars (mg/mL) |
---|---|---|---|---|
Foregut | Pseudomonas putida AAT01 | (+) | 12.3 ± (0.56) | 23.895 ± (0.359) * |
Foregut | Enterococcus sp. AAT02 | (−) | ND | ND ≠ |
Foregut | Enterobacter cloacae AAT03 | (+) | 13.1 ± (0.81) | 26.031 ± (0.470) |
Foregut | Bacillus sp. AAT04 | (−) | ND | ND |
Foregut | Bacillus sp. AAT05 | (−) | ND | ND |
Foregut | Serratia marcescens AAT06 | (+) | 9.6 ± (0.41) | 13.934 ± (0.379) |
Foregut | Enterobacter sp. AAT07 | (+) | 8.9 ± (0.34) | 13.159 ± (0.365) |
Midgut | Serratia marcescens AAM08 | (+) | 14.5 ± (0.91) | 28.599 ± (0.360) |
Midgut | Serratia sp. AAM09 | (+) | 13.8 ± (0.72) | 27.397 ± (0.535) |
Midgut | Enterobacter sp. AAM10 | (+) | 16.2 ± (0.81) | 35.185 ± (0.325) |
Midgut | Serratia sp. AAM11 | (+) | 12.9 ± (0.31) | 25.621 ± (0.175) |
Midgut | Serratia marcescens AAM12 | (+) | 12.3 ± (0.98) | 24.781 ± (0.243) |
Midgut | Bacillus sp. AAM13 | (+) | 14.0 ± (0.88) | 29.540 ± (0.251) |
Midgut | Leclercia sp. AAM14 | (+) | 10.1 ± (0.45) | 15.816 ± (0.104) |
Midgut | Serratia marcescens AAC18 | (+) | 12.1 ± (0.43) | 24.780 ± (0.825) |
Hindgut | Serratia marcescens AAP15 | (+) | 11.8 ± (0.43) | 24.172 ± (0.651) |
Hindgut | Enterobacter asburiae AAP16 | (−) | ND | ND |
Hindgut | Acinetobacter quilouiae AAP17 | (−) | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hernández, M.G.; Rincón-Rosales, R.; Rincón-Molina, C.I.; Manzano-Gómez, L.A.; Gen-Jiménez, A.; Maldonado-Gómez, J.C.; Rincón-Molina, F.A. Diversity and Functional Potential of Gut Bacteria Associated with the Insect Arsenura armida (Lepidoptera: Saturniidae). Insects 2025, 16, 711. https://doi.org/10.3390/insects16070711
López-Hernández MG, Rincón-Rosales R, Rincón-Molina CI, Manzano-Gómez LA, Gen-Jiménez A, Maldonado-Gómez JC, Rincón-Molina FA. Diversity and Functional Potential of Gut Bacteria Associated with the Insect Arsenura armida (Lepidoptera: Saturniidae). Insects. 2025; 16(7):711. https://doi.org/10.3390/insects16070711
Chicago/Turabian StyleLópez-Hernández, María Griselda, Reiner Rincón-Rosales, Clara Ivette Rincón-Molina, Luis Alberto Manzano-Gómez, Adriana Gen-Jiménez, Julio Cesar Maldonado-Gómez, and Francisco Alexander Rincón-Molina. 2025. "Diversity and Functional Potential of Gut Bacteria Associated with the Insect Arsenura armida (Lepidoptera: Saturniidae)" Insects 16, no. 7: 711. https://doi.org/10.3390/insects16070711
APA StyleLópez-Hernández, M. G., Rincón-Rosales, R., Rincón-Molina, C. I., Manzano-Gómez, L. A., Gen-Jiménez, A., Maldonado-Gómez, J. C., & Rincón-Molina, F. A. (2025). Diversity and Functional Potential of Gut Bacteria Associated with the Insect Arsenura armida (Lepidoptera: Saturniidae). Insects, 16(7), 711. https://doi.org/10.3390/insects16070711