New Amber Fossils Indicate That Larvae of Dermestidae Had Longer Defensive Structures in the Past
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.3. Statistical Analysis
2.4. Description Style for New Specimens
3. Results
3.1. General Description of Body Organization of the Larvae
3.2. Probable Fossil Larvae of Dermestidae from the Miocene
3.2.1. Specimen 1 [26] (Their Figure 1A–C)
3.2.2. Specimens 2 and 3 [33] (Their Figures 21 and 22)
3.2.3. Specimen 4 [31] (Their Figures 10 and 11)
3.2.4. Specimen 5 (Lausitz Specimen, Figure 2 and Figure 3)
3.2.5. Specimen 6 (PED 1589, Figure 4)
3.2.6. Specimen 7 (PED 1589, Figure 4A and Figure 5)
3.2.7. Specimen 8 (OU 33160.1, Figure 6) (Their Figure 3I) [43]
3.2.8. Specimen 9 (OU 33636.3, Figure 7 and Figure 8)
3.3. Fossil Larvae of Dermestidae from the Eocene
3.3.1. Specimen 10 [35] (Their Figure 11)
3.3.2. Specimen 11 [65] (Their Figures 1–4)
3.3.3. Specimen 12 [97] (Their Figure 3)
3.3.4. Specimen 13 [98] (Their Figures 8 and 14F)
3.3.5. Specimen 14 [60] (Their Figures 1 and 2)
3.3.6. Specimen 15 (SNSB BSPG 2018 III 40, Figure 9A)
3.3.7. Specimen 16 (SNSB BSPG 2018 III 142, Figure 9B–D)
3.4. Fossil Larvae of Dermestidae from the Cretaceous
3.4.1. Specimen 17 [10] (Their Figure 1A,B)
3.4.2. Specimen 18 [42] (Their Figure 6A–D)
3.4.3. Specimen 19 [100] (p. 441)
3.4.4. Specimen 20 [101] (Their Figure 29)
3.4.5. Specimen 21 [103] (Their Figure 4B)
3.4.6. Specimen 22 [104] (Their Figure 1)
3.4.7. Specimen 23 [31] (Their Figure 9)
3.4.8. Specimens 24, 25, 26, 27 [106] (Their Figures 1C,D, 3 and S2)
3.4.9. Specimen 28 (TMP 96.9.366, Figure 10A,B)
3.4.10. Specimen 29 (TMP 96.9.393a, Figure 10D,E)
3.4.11. Specimen 30 (TMP 96.9.393b, Figure 10F,G)
3.4.12. Specimen 31 (PED 2550, Figure 11A–D)
3.4.13. Specimen 32 (PED 1369, Figure 12)
3.4.14. Specimen 33 (PED 3504, Figure 13)
3.4.15. Specimen 34 (PED 3393, Figure 14A–H)
3.4.16. Specimen 35 (PED 2929, Figure 14I–L)
3.4.17. Specimen 36 (PED 3663, Figure 15)
3.4.18. Specimen 37 (PED 2926, Figure 16A–D)
3.4.19. Specimen 38 (PED 3857, Figure 16E–H)
3.4.20. Specimen 39 (PED 0707, Figure 17A–D)
3.4.21. Specimen 40 (PED 0809, Figure 17E,F)
3.4.22. Specimen 41 (PED 0647, Figure 18)
3.4.23. Specimen 42 (PED 1849, Figure 19)
3.4.24. Specimen 43 (PED 3892, Figure 20)
3.4.25. Specimen 44 (PED 3926, Figure 21)
3.4.26. Specimen 45 (PED 3917, Figure 22A,E,G)
3.4.27. Specimen 46 (PED 3705, Figure 22B–D,F)
3.4.28. Specimen 47 (PED 3960, Figure 23)
3.4.29. Specimen 48 (PED 3961, Figure 24)
3.4.30. Specimen 49 (BUB3346, Figure 9E–H)
3.4.31. Specimen 50 (BUB 3184, Figure 25A,B)
3.4.32. Specimen 51 (BUB3353, Figure 25C–E)
3.4.33. Specimen 52 (PED 4043, Figure 26)
3.4.34. Specimen 53 (PED 4051, Figure 27)
3.4.35. Specimen 54 (PED 4148, Figure 28A–D)
3.4.36. Specimen 55 (PED 4168, Figure 28E–I)
3.4.37. Specimen 56 (PED 4406, Figure 29A,C–E)
3.4.38. Specimen 57 (PED 4409, Figure 29B,F,G)
3.4.39. Specimen 58 (PED 4379, Figure 30A–C)
3.4.40. Specimen 59 (PED 4380, Figure 30D–F)
3.5. Morphometric Analyses of Dermestidae
3.6. Morphometric Analyses of Megatominae
4. Discussion
4.1. General Identity of Specimens: Larvae of Dermestidae
4.2. Identity of Specimens Within Dermestidae: Possible Larvae of Orphilinae, Dermestinae, Trinodinae, Attageninae and Megatominae
4.2.1. Larvae of Morphotype 1
4.2.2. Larva of Morphotype 2
4.2.3. Larvae of Morphotype 3
4.2.4. Larvae of Morphotype 4
4.2.5. Larvae of Morphotypes with Hastisetae
4.3. Possible Identities of Specimens of Megatominae
4.3.1. Larvae of Morphotype 5
4.3.2. Larvae of Morphotype 6
4.3.3. Larva of Morphotype 7
4.3.4. Larvae of Morphotype 8
4.3.5. Larvae of Morphotype 9
4.4. Morphological Diversity of Hairs in Fossil Larvae of Dermestidae
4.5. Evolutionary Changes in Larvae of Dermestidae
4.6. Defensive Setae in Representatives of Euarthropoda
4.7. Temporal and Spatial Occurrences of Larvae of Dermestidae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mroczkowski, M. Distribution of the Dermestidae (Coleoptera) of the world with a catalogue of all known species. Ann. Zool. 1968, 26, 15–192. Available online: https://rcin.org.pl/miiz/publication/2102 (accessed on 29 June 2025).
- Eliopoulos, P.A. New approaches for tackling the khapra beetle. CABI Rev. 2013, 8, 1–13. [Google Scholar] [CrossRef]
- Yadav, S.K.; Srivastava, C.; Sabtharishi, S. Phosphine resistance and antioxidant enzyme activity in Trogoderma granarium Everts. J. Stored Prod. Res. 2020, 87, 101636. [Google Scholar] [CrossRef]
- Yadav, S.K.; Bhowmik, S.; Yadav, P.C.; Sharma, K.C. Identification and control of Trogoderma granarium (Coleoptera: Dermestidae), a potential threat to stored products and international trade. Int. J. Trop. Insect Sci. 2022, 42, 999–1017. [Google Scholar] [CrossRef]
- Veer, V.; Negi, B.K.; Rao, K.M. Dermestid beetles and some other insect pests associated with stored silkworm cocoons in India, including a world list of dermestid species found attacking this commodity. J. Stored Prod. Res. 1996, 32, 69–89. [Google Scholar] [CrossRef]
- Rajitha, K.; Sowmya, P. Dermestid beetle [Dermestes ater (De Geer)]: A pest in silkworm (Bombyx mori L.) seed production. Biochem. Cell. Arch. 2021, 21 (Suppl. S01), 2899–2904. Available online: https://connectjournals.com/03896.2021.21.2899 (accessed on 29 June 2025).
- Rajendran, S.; Parveen, K.M.H. Insect infestation in stored animal products. J. Stored Prod. Res. 2005, 41, 1–30. [Google Scholar] [CrossRef]
- Ruzzier, E.; Kadej, M.; Di Giulio, A.; Battisti, A. Entangling the enemy: Ecological, systematic, and medical implications of dermestid beetle hastisetae. Insects 2021, 12, 436. [Google Scholar] [CrossRef]
- Elbert, A. Elektronenmikroskopische Untersuchungen der Pfeilhaare verschiedener Arten der Anthreninae (Col. Dermestidae). Anz. Schädlingskunde Pflanzenschutz Umweltschutz 1976, 49, 81–83. (In German) [Google Scholar] [CrossRef]
- Poinar, G., Jr.; Poinar, R. Ancient hastisetae of Cretaceous carrion beetles (Coleoptera: Dermestidae) in Myanmar amber. Arthropod Struct. Dev. 2016, 45, 642–645. [Google Scholar] [CrossRef]
- Elbert, A. Die Pfeilhaare der Megatominae (Col. Dermestidae): Ein Abwehrsystem. Anz. Schädlingskunde Pflanzenschutz Umweltschutz 1978, 51, 109–110. (In German) [Google Scholar] [CrossRef]
- Ruzzier, E. Ecology and Evolution of Detachable Setae in Dermestid Beetles: Implications in Pest Control and Public Health. Ph.D. Thesis, Università degli Studi di Padova, Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Padua, Italy, 2022; 176p. Available online: https://hdl.handle.net/11577/3442202 (accessed on 29 June 2025).
- Nutting, W.L.; Spangler, H.G. The hastate setae of certain dermestid larvae: An entangling defense mechanism. Ann. Entomol. Soc. Am. 1969, 62, 763–769. [Google Scholar] [CrossRef]
- Ahmed, A.R.; Moy, R.; Barr, A.R.; Price, Z. Carpet beetle dermatitis. J. Am. Acad. Dermatol. 1981, 5, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Herranz, J.; de las Heras, M.; Fernández, M.; Lluch, M.; Figueredo, E.; Umpierrez, A.; Lahoz, C. Allergic reaction caused by local anesthetic agents belonging to the amide group. J. Allergy Clin. Immunol. 1997, 99, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Ruzzier, E.; Kadej, M.; Battisti, A. Occurrence, ecological function and medical importance of dermestid beetle hastisetae. PeerJ 2020, 8, e8340. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Sikes, D.S. Larger insect collection specimens are not more likely to show evidence of apparent feeding damage by dermestids (Coleoptera: Dermestidae). Newsl. Alsk. Entomol. Soc. 2018, 11, 5–8. [Google Scholar] [CrossRef]
- Shahrabi, S.; Seddigh, S.; Sodaie, B.; Kadej, M. Dermestidae (Insecta: Coleoptera) of Niavaran Museum with a new record for Iran. J. Insect Biodivers. Syst. 2018, 4, 123–129. [Google Scholar] [CrossRef]
- Brimblecombe, P. Predicting the changing insect threat in the UK heritage environment. J. Inst. Conserv. 2024, 47, 133–148. [Google Scholar] [CrossRef]
- Motyka, M.; Kusy, D.; Háva, J.; Jahodářová, E.; Bílková, R.; Vogler, A.P.; Bocak, L. Mitogenomic data elucidate the phylogeny and evolution of life strategies in Dermestidae (Coleoptera). Syst. Entomol 2022, 47, 82–93. [Google Scholar] [CrossRef]
- Smith, K.G.V. A Manual of Forensic Entomology; Trustees of the British Museum (Natural History): London, UK; Cornell University Press: London, UK, 1986; 205p. [Google Scholar]
- Charabidze, D.; Colard, T.; Becart, A.; Hedouin, V. Use of larder beetles (Coleoptera: Dermestidae) to deflesh human jaws. Forensic Sci. Int. 2014, 234, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Timm, R.M.; McLaren, S.B.; Genoways, H.H. Innovations that changed Mammalogy: Dermestid beetles—The better way to clean skulls. J. Mammal. 2020, 101, 923–925. [Google Scholar] [CrossRef]
- Kulshrestha, P.; Satpathy, D.K. Use of beetles in forensic entomology. Forensic Sci. Int. 2001, 120, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.C.; Forbes, S.L.; Dadour, I.R. Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci. Med. Pathol. 2008, 4, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kiselyova, T.; Mchugh, J.V. A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology. Syst. Entomol. 2006, 31, 469–507. [Google Scholar] [CrossRef]
- Kadej, M. Contribution to Knowledge of the Immature Stages of Dermestidae with Special Emphasis on the Larval Morphology of the Genus Anthrenus Geoffroy, 1762 (Megatominae: Anthrenini); Polish Entomological Society: Poznań, Poland, 2018; 180p. [Google Scholar]
- Deng, C.; Ślipiński, A.; Ren, D.; Pang, H. New Cretaceous carpet beetles (Coleoptera: Dermestidae) from Burmese amber. Cretac. Res. 2017, 76, 1–6. [Google Scholar] [CrossRef]
- Dunstan, B. Mesozoic Insects of Queensland. Part I. Introduction and Coleoptera. Qld. Geol. Surv. Publ. 1923, 273, 1–88. [Google Scholar]
- Háva, J. Dermestidae (Coleoptera). World Catalogue of Insects; Brill: Leiden, The Netherlands, 2015; Volume 13, pp. i–xvi+419. [Google Scholar] [CrossRef]
- Háva, J. A contribution to the knowledge of amber Dermestidae (Coleoptera: Bostrichoidea) with a list of all known fossil species. Stud. Rep.-Taxon. Ser. 2023, 19, 267–284. [Google Scholar]
- Háva, J.; Prokop, J. New fossil dermestid-beetles (Coleoptera: Dermestidae) from the Dominican amber of the Greater Antilles, with an appendix listing known fossil species of this family. Acta Soc. Zool. Bohemicae 2004, 68, 173–182. [Google Scholar]
- Poinar, G., Jr.; Háva, J. New Dermestidae (Coleoptera) from Dominican Amber. Palaeodiversity 2015, 8, 1–11. [Google Scholar]
- Goeppert, H.R.; Berendt, G.C. Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt. In Die Im Bernstein Befindlichen Organischen Reste Der Vorwelt; 1. Band, I. Abtheilung; Berendt, G.C., Ed.; Commission der Nicolaischen Buchhandlung: Berlin, Germany, 1845; pp. 1–140. (In German) [Google Scholar]
- Háva, J.; Prokop, J.; Herrmann, A. New fossil dermestid beetles (Coleoptera: Dermestidae) from the Baltic amber. Acta Soc. Zool. Bohemicae 2006, 69, 281–287. [Google Scholar]
- Zhantiev, R.D. New species of Late Eocene dermestid beetles (Coleoptera, Dermestidae) from the Rovno and Baltic ambers. Palaeontol. J. 2006, 40, 560–563. [Google Scholar] [CrossRef]
- Háva, J.; Bukejs, A. Attagenus yantarnyi sp. nov., a new species from Baltic amber (Coleoptera: Dermestidae). Balt. J. Coleopterol. 2012, 12, 155–158. [Google Scholar]
- Háva, J. New data on fossil species from Baltic amber with description of a new species (Coleoptera: Dermestidae). Arq. Entomolóxicos 2014, 10, 211–216. [Google Scholar]
- Cai, C.; Háva, J.; Huang, D. The earliest Attagenus species (Coleoptera: Dermestidae: Attageninae) from Upper Cretaceous Burmese amber. Cretac. Res. 2017, 72, 95–99. [Google Scholar] [CrossRef]
- Li, Y.D.; Huang, D.Y.; Cai, C.Y. “Attagenus” burmiticus from mid-Cretaceous amber reinterpreted as a member of Orphilinae (Coleoptera: Dermestidae). Palaeoentomol 2022, 5, 390–394. [Google Scholar] [CrossRef]
- Háva, J.; Wappler, T. A new genus and species of Dermestidae (Coleoptera) from the Eckfeld Maar crater (Middle Eocene, Germany). Bull. Geosci. 2014, 89, 67–74. [Google Scholar] [CrossRef]
- Peñalver, E.; Arillo, A.; Delclòs, X.; Peris, D.; Grimaldi, D.A.; Anderson, S.R.; Nascimbene, P.C.; Pérez-de la Fuente, R. Ticks parasitized feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 2017, 8, 1924. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.R.; Kaulfuss, U.; Bannister, J.M.; Baranov, V.; Beimforde, C.; Bleile, N.; Borkent, A.; Busch, A.; Conran, J.G.; Engel, M.S.; et al. Amber inclusions from New Zealand. Gondwana Res. 2018, 56, 135–146. [Google Scholar] [CrossRef]
- Kitching, J.W. On some fossil Arthropoda from the Limeworks, Makapansgat, Potgietersrus. Paleontol. Afr. 1980, 23, 63–68. Available online: http://hdl.handle.net/10539/16317 (accessed on 29 June 2025).
- Rogers, R.R. Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. J. Vertebr. Paleontol. 1992, 12, 528–531. [Google Scholar] [CrossRef]
- Martin, L.D.; West, D.L. The recognition and use of dermestid (Insecta, Coleoptera) pupation chambers in paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 113, 303–310. [Google Scholar] [CrossRef]
- Hasiotis, S.T.; Fiorillo, A.R.; Hanna, R.R. Preliminary report on borings in Jurassic dinosaur bones: Evidence for invertebrate-vertebrate interactions. In Vertebrate Paleontology in Utah. Utah Geological Survey Miscellaneous Publication; Utah Geological Survey: Salt Lake City, UT, USA, 1999; Volume 99, pp. 193–200. [Google Scholar]
- West, D.L.; Hasiotis, S.T. Trace fossils in an archaeological context: Examples from Bison skeletons, Texas, USA. In Trace Fossils. Concepts, Problems, Prospects, 2nd ed.; Miller, W., III, Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 545–561. [Google Scholar] [CrossRef]
- Britt, B.B.; Scheetz, R.D.; Dangerfield, A. A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 2008, 15, 59–71. [Google Scholar] [CrossRef]
- Bader, K.S.; Hasiotis, S.T.; Martin, L.D. Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, northeastern Wyoming. PALAIOS 2009, 24, 140–158. [Google Scholar] [CrossRef]
- Dominato, V.G.; Mothé, D.; Avilla, L.S. Insect action in vertrebrae of Stegomastodon waringi (Mammalia, Gompotheriidae) from the Pleistocene of Águas de Araxá, Minas Gerais, Brazil. Rev. Bras. Paleontol. 2009, 12, 77–82. [Google Scholar] [CrossRef]
- Holden, A.R.; Harris, J.M.; Timm, R.M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, southern California. PLoS ONE 2013, 8, e67119. [Google Scholar] [CrossRef] [PubMed]
- Huchet, J.-B.; Le Mort, F.; Rabinovich, R.; Blau, S.; Coqueugniot, H.; Arensburg, B. Identification of dermestid pupal chambers on Southern Levant human bones: Inference for reconstruction of Middle Bronze Age mortuary practices. J. Archaeol. Sci. 2013, 40, 3793–3803. [Google Scholar] [CrossRef]
- Xing, L.; Parkinson, A.H.; Ran, H.; Pirrone, C.A.; Roberts, E.M.; Zhang, J.; Burns, M.E.; Wang, T.; Choiniere, J. The earliest fossil evidence of bone boring by terrestrial invertebrates, examples from China and South Africa. Int. J. Paleobiol. 2016, 28, 1108–1117. [Google Scholar] [CrossRef]
- Höpner, S.; Bertling, M. Holes in bones: Ichnotaxonomy of bone borings. Ichnos 2017, 24, 259–282. [Google Scholar] [CrossRef]
- Shears-Ozeki, C. Bored bones from the terrestrial middle Cretaceous Kem-Kem beds of Southeast Morocco. PeerJ Prepr. 2017, 5, e3200v2. [Google Scholar] [CrossRef]
- McHugh, J.B.; Drumheller, S.K.; Riedel, A.; Kane, M. Decomposition of dinosaurian remains inferred by invertebrate traces on vertebrate bone reveal new insights into Late Jurassic ecology, decay, and climate in western Colorado. PeerJ 2020, 8, e9510. [Google Scholar] [CrossRef] [PubMed]
- Gatta, M.; Rolfo, M.F.; Salari, L.; Jacob, E.; Valentini, F.; Scevola, G.; Doddi, M.; Neri, A.; Martín-Vega, D. Dermestid pupal chambers on Late Pleistocene faunal bones from Cava Muracci (Cisterna di Latina, central Italy): Environmental implications for the central Mediterranean basin during MIS 3. J. Archaeol. Sci. Rep. 2021, 35, 102780. [Google Scholar] [CrossRef]
- Parkinson, A. Modern bone modification by Dermestes maculatus and criteria for the recognition of dermestid traces in the fossil record. Hist. Biol. 2023, 35, 567–579. [Google Scholar] [CrossRef]
- Perkovsky, E.E.; Háva, J.; Zaitsev, A.A. The first finding of a skin beetle (Coleoptera, Dermestidae) from Sakhalinian amber. Palaeontol. J. 2021, 55, 184–192. [Google Scholar] [CrossRef]
- Háva, J.; Alekseev, V.I. Contribution to the palaeofauna of Dermestidae (Coleoptera) from Baltic and Bitterfeld amber. Zool. Ecol. 2015, 25, 154–156. [Google Scholar] [CrossRef]
- Háva, J.; Bukejs, A. A short contribution to the Dermestidae (Insecta: Coleoptera) from Baltic amber. Acta Biol. Univ. Daugavpiliensis 2018, 18, 207–209. [Google Scholar]
- Turbanov, I.S.; Kolesnikov, V.B.; Vorontsov, D.D.; Vasilenko, D.V.; Perkovsky, E.E. Chthonius marusiki sp. nov.–the first pseudoscorpion of the family Chthoniidae Daday, 1889 (Arachnida, Pseudoscorpiones) from the late Eocene Rovno amber. Hist. Biol. 2024, 36, 2557–2564. [Google Scholar] [CrossRef]
- Cockerell, T.D.A. Arthropods in Burmese amber. Psyche J. Entomol. 1917, 24, 40–45. [Google Scholar] [CrossRef]
- Kadej, M.; Háva, J. First record of a fossil Trinodes larva from Baltic amber (Coleoptera: Dermestidae: Trinodinae). Gen. Int. J. Invertebr. Taxon. 2011, 22, 17–22. [Google Scholar]
- Kadej, M.; Jaroszewicz, S.; Tarnawski, D. Morphology of mature larvae of three species of the genus Anthrenus (Dermestidae: Megatominae: Anthrenini) with comparisons to related species. Ann. Entomol. Soc. Am. 2013, 106, 706–718. [Google Scholar] [CrossRef]
- Kadej, M.; Jaroszewicz, S.; Tarnawski, D. Comparative morphology and biology of mature larvae in the genus Anthrenus (Dermestidae: Megatominae: Anthrenini) with comparisons to related species. Ann. Soc. Entomol. Fr. 2013, 49, 244–256. [Google Scholar] [CrossRef]
- Kadej, M.; Guziak, J.; Marczak, D. A detailed updated description of the morphology of the larva of Reesa vespulae (Coleoptera: Dermestidae: Megatominae: Megatomini). Fla. Entomol. 2017, 100, 286–291. [Google Scholar] [CrossRef]
- Kadej, M.; Guziak, J. First detailled description of morphology of larva of Paranovelsis pantherinus (Ahrens, 1814) (Dermestidae: Attageninae: Attagenini) with remarks on biology. J. Asia-Pac. Entomol. 2017, 20, 113–118. [Google Scholar] [CrossRef]
- Kiselyova, T. Description of the larval and pupal stages of Cryptorhopalum triste LeConte (Coleoptera: Dermestidae), with notes on biology and rearing. Coleopt. Bull. 2002, 56, 41–49. [Google Scholar] [CrossRef]
- Kiselyova, T. Description of the larval stage of Myrmeanthrenus frontalis Armstrong and Anthrenocerus stigmacrophilus Armstrong (Coleoptera: Dermestidae) with a discussion of their phylogenetic relationships. Coleopt. Bull. 2008, 62, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Zippel, A. The Evolutionary History of Wood-Associated Beetle Larvae and the Contribution of Amber Fossils. Ph.D. Thesis, Ludwig-Maximilians-Universität München, Fakultät für Biologie, Munich, Germany, 2023; 243p. [Google Scholar] [CrossRef]
- Haug, C.; Haug, J.T.; Haug, G.T.; Müller, P.; Zippel, A.; Kiesmüller, C.; Gauweiler, J.; Hörnig, M.K. Fossils in Myanmar amber demonstrate the diversity of anti-predator strategies of Cretaceous holometabolan insect larvae. iScience 2024, 27, 108621. [Google Scholar] [CrossRef] [PubMed]
- Haug, J.T.; Müller, C.H.G.; Sombke, A. A centipede nymph in Baltic amber and a new approach to document amber fossils. Org. Divers. Evol. 2013, 13, 425–432. [Google Scholar] [CrossRef]
- Haug, C.; Shannon, K.R.; Nyborg, T.; Vega, F.J. Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda. Bol. Soc. Geol. Mex. 2013, 65, 273–284. [Google Scholar] [CrossRef]
- Greving, I.; Wilde, F.; Ogurreck, M.; Herzen, J.; Hammel, J.U.; Hipp, A.; Friedrich, F.; Lottermoser, L.; Dose, T.; Burmester, H.; et al. P05 imaging beamline at PETRA III: First results. In SPIE-Developments in X-Ray Tomography IX; Stuart, R.S., Ed.; SPIE: Bellingham, WA, USA, 2014; Volume 9212, pp. 166–173. [Google Scholar] [CrossRef]
- Haibel, A.; Ogurreck, M.; Beckmann, F.; Dose, T.; Wilde, F.; Herzen, J.; Müller, M.; Schreyer, A.; Nazmov, V.; Simon, M.; et al. Micro- and nano-tomography at the GKSS Imaging Beamline at PETRA III. In Proceedings of the SPIE: Developments in X-Ray Tomography VII 2010, San Diego, CA, USA, 2–5 August 2010; Volume 7804. [Google Scholar]
- Wilde, F.; Ogurreck, M.; Greving, I.; Hammel, J.U.; Beckmann, F.; Hipp, A.; Lottermoser, L.; Khokhriakov, I.; Lytaev, P.; Dose, T.; et al. Micro-CT at the imaging beamline P05 at PETRA III. AIP Conf. Proc. 2016, 1741, 030035. [Google Scholar] [CrossRef]
- Moosmann, J.; Ershov, A.; Weinhardt, V.; Baumbach, T.; Prasad, M.S.; LaBonne, C.; Xiao, X.; Kashef, J.; Hofmann, R. Time-lapse X-ray phase-contrast microtomography for in vivo- imaging and analysis of morphogenesis. Nat. Protoc. 2014, 9, 294–304. [Google Scholar] [CrossRef]
- van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J. The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015, 157, 35–47. [Google Scholar] [CrossRef] [PubMed]
- van Aarle, W.; Palenstijn, W.J.; Cant, J.; Janssens, E.; Bleichrodt, F.; Dabravolski, A.; De Beenhouwer, J.; Batenburg, K.J.; Sijbers, J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 2016, 24, 25129–25147. [Google Scholar] [CrossRef]
- Limaye, A. Drishti: A volume exploration and presentation tool. In Proceedings Volume 8506, Developments in X-Ray Tomography VIII; Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 17 October 2012; SPIE: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Amira 3D Software Suit, version 2024.1; Thermo Fischer Scientific: Shanghai, China, 2024. Available online: https://www.thermofisher.com/ch/en/home/electron-microscopy/products/software-em-3d-vis/amira-software (accessed on 29 June 2025).
- R Found, version 2024; R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020.
- RStudio, Integrated Development Environment for R. Posit Software; Posit Team: Boston, MA, USA, 2024. Available online: http://www.posit.co/ (accessed on 29 June 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; p. xvi+260. [Google Scholar]
- Kassambara, A. ggpubr, Version 0.6.0.; “ggplot” Based Publication Ready Plots. R Package; 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 29 June 2025).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, CA, USA, 2019; 608p. [Google Scholar]
- Ogle, D.H.; Doll, J.C.; Wheeler, A.W.; Dinno, A. R Package, Version 0.9; FSA: Simple Fisheries Stock Assesment Methods; 2025. Available online: https://CRAN.R-project.org/package=FSA (accessed on 29 June 2025).
- Nijs, V. R package, version 1.6.6.; Radiant: Business Analytics using R and Shiny; 2024. Available online: https://CRAN.R-project.org/package=radiant (accessed on 29 June 2025).
- Rayfield, E.J.; Theodor, J.M.; Polly, P.D. Fossils from Conflict Zones and Reproducibility of Fossil-Based Scientific Data. Society of Vertebrate Paleontology 2020, Letter, 21 April 2020. Available online: https://vertpaleo.org/wp-content/uploads/2021/01/SVP-Letter-to-Editors-FINAL.pdf (accessed on 4 September 2021).
- Poinar, G., Jr.; Ellenberger, S. Burmese amber fossils, mining, sales and profits. Geoconserv. Res. 2020, 3, 12–16. [Google Scholar]
- Peretti, A. An alternative perspective for acquisitions of amber from Myanmar including recommendations of the United Nations Human Rights Council. J. Int. Humanit. Action 2021, 6, 12. [Google Scholar] [CrossRef]
- Haug, J.T.; Azar, D.; Ross, A.; Szwedo, J.; Wang, B.; Arillo, A.; Baranov, V.; Bechteler, J.; Beutel, R.; Blagoderov, V.; et al. Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding “Fossils from conflict zones and reproducibility of fossil-based scientific data”, Myanmar amber. PalZ 2020, 94, 431–437. [Google Scholar] [CrossRef]
- Society of Vertebrate Paleontology’s Myanmar Working Group. Recommendations for Researchers, Research Institutions, and Publishers for Myanmar Amber 2021. Updated 6 August 2021. Available online: https://vertpaleo.org/wp-content/uploads/2021/06/SVP-Recommendations-for-Researchers-Research-Institutions-and-Publishers-for-Myanmar-Amber.pdf (accessed on 4 September 2021).
- Háva, J. To the knowledge of Dermestidae (Coleoptera) from Eocene Baltic amber. Munis Entomol. Zool. J. Coleopt. 2022, 17, 219–222. [Google Scholar]
- Grimaldi, D.A.; Sunderlin, D.; Aaroe, G.A.; Dempsky, M.R.; Parker, N.E.; Tillery, G.Q.; White, J.G.; Barden, P.; Nascimbene, P.C.; Williams, C.J. Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska. Am. Mus. Novit. 2018, 3908, 1–37. [Google Scholar] [CrossRef]
- Rasnitsyn, A.P.; Poinar, G., Jr.; Brown, A.E. Bizzare wingless parasitic wasp from mid-Cretaceous Burmese amber (Hymenoptera, Ceraphronoidea, Aptenoperissidae fam. nov.). Cretac. Res. 2017, 69, 113–118. [Google Scholar] [CrossRef]
- Zhang, W.W. Frozen Dimensions of the Fossil Insects and Other Invertebrates in Amber; Chongqing Univeristy Press: Chongqing, China, 2017; 692p. (In Chinese) [Google Scholar]
- Poinar, G., Jr. Associations between fossil beetles and other organisms. Geosciences 2019, 9, 184. [Google Scholar] [CrossRef]
- Poinar, G., Jr. Palaeoecological perspectives in Dominican amber. Ann. Soc. Entomol. Fr. 2010, 46, 23–52. [Google Scholar] [CrossRef]
- Peris, D.; Rust, J. Cretaceous beetles (Insecta: Coleoptera) in amber: The palaeoecology of this most diverse group of insects. Zool. J. Linn. Soc. 2020, 189, 1085–1104. [Google Scholar] [CrossRef]
- Háva, J. Systematic position of Dermestes larvalis Cockrell, 1917 (Coleoptera: Dermestidae) from Cretaceous Burmese amber. Euroasian Entomol. J. 2022, 21, 35–36. [Google Scholar] [CrossRef]
- Ross, A.J.; York, P.V. A list of type and figured specimens of insects and other inclusions in Burmese amber. Bull. Nat. Hist. Mus. Lond. Geol. Ser. 2000, 56, 11–20. Available online: https://www.biodiversitylibrary.org/page/40537664 (accessed on 29 June 2025).
- Peñalver, E.; Peris, D.; Álvarez-Parra, S.; Grimaldi, D.A.; Arillo, A.; Chiappe, L.; Delclós, X.; Alcalá, L.; Sanz, J.L.; Solórzano-Kraemer, M.M.; et al. Symbiosis between Cretaceous dinosaurs and feather-feeding beetles. Proc. Natl. Acad. Sci. USA 2023, 120, e2217872120. [Google Scholar] [CrossRef] [PubMed]
- Paulian, R. The larvae of the sub-family Orphilinae and their bearing on the sytematic status of the family Dermestidae (Col.). Ann. Entomol. Soc. Am. 1942, 35, 393–396. [Google Scholar] [CrossRef]
- Rees, B.E. Classification of the Dermestidae (Larder, Hide, and Carpet Beetles) based on Larval Characters, with a Key to the North American Genera; United States Department of Agriculture Miscellaneous Publication: Beltsville, MD, USA, 1943; Volume 511, pp. 1–18. [Google Scholar]
- Beal, R.S. Dermestidae (Bostrichoidea) (including Thorictidae, Thylodriidae). Carpet beetles, Hide beetles, Larder beetles. In Immature Insects; Stehr, F.W., Ed.; Kendall/Hunt Publishing Co.: Dubuque, IA, USA, 1991; Volume 2, pp. 434–439. [Google Scholar]
- Klausnitzer, B. Ordnung Coleoptera (Larven); Springer Science and Business Media: Dordrecht, The Netherlands, 1978; Volume 10, 378p, (In German). [Google Scholar] [CrossRef]
- Böving, A.G.; Craighead, F.C. An Illustrated Synopsis of the Principal Larval Forms of the Order Coleoptera; Brooklyn Entomological Society: Brooklyn, NY, USA, 1931; 351p. [Google Scholar]
- Peacock, E.R. Adults and larvae of hide, larder and carpet beetles and their relatives (Coleoptera: Dermestidae) and of derodontid beetles (Coleoptera: Derodontidae). In Handbooks for the Identification of British Insects; British Museum (Natural History): London, UK, 1993; Volume 5, p. 144. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19930515713 (accessed on 29 June 2025).
- Lawrence, J.F.; Ślipiński, A. 6.1. Dermestidae Latreille, 1804. In Handbook of Zoology, Vol. IV Arthropoda: Insecta. Part 38. Coleoptera, vol. 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia Partim), 1st ed.; Kristensen, N.P., Beutel, R.G., Eds.; Walter De Gruyter: Berlin, Germany, 2010; Volume 4, pp. 198–206. [Google Scholar] [CrossRef]
- Ruzzier, E.; Muzzi, M.; Kadej, M.; Battisti, A.; Di Giulio, A. Trogoderma granarium Everts, 1898 (Coleoptera: Dermestidae)—A model species to investigate hastisetae functional morphology. Eur. Zool. J. 2022, 89, 902–912. [Google Scholar] [CrossRef]
- Kadej, M. Larva and pupa of Ctesias (s. str.) serra (Fabricius, 1792) with remarks on biology and economic importance, and larval comparison of co-occurring genera (Coleoptera, Dermestidae). ZooKeys 2018, 758, 115–135. [Google Scholar] [CrossRef] [PubMed]
- Kadej, M. Larva and pupa of Megatoma (s. str.) undata (Linnaeus, 1758) with remarks on biology and economic importance (Coleoptera, Dermestidae). ZooKeys 2017, 698, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Kadej, M.; Jaroszewicz, S. Detailed morphological description of the mature larva of Globicornis corticalis (Eichhoff, 1863) (Dermestidae: Megatominae) with comparisons to related species. Zootaxa 2013, 3686, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Beal, R.S., Jr. Biology and Taxonomy of the Nearctic Species of Trogoderma (Coleoptera: Dermestidae); University of California Publications in Entomology: Oakland, CA, USA, 1954; Volume 10, pp. 35–102. [Google Scholar]
- Mills, R.B.; Partida, G.J. Attachment mechanisms of Trogoderma hastisetae that make possible their defensive function. Ann. Entomol. Soc. Am. 1976, 69, 29–33. [Google Scholar] [CrossRef]
- Hall, B.K. Palaeontology and evolutionary developmental biology: A science of the nineteenth and twenty—first centuries. Palaeontology 2002, 45, 647–669. [Google Scholar] [CrossRef]
- Haug, J.T.; Haug, C.; Waloszek, D.; Schweigert, G. The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss J. Geosci. 2011, 104, 85–98. [Google Scholar] [CrossRef]
- Haug, J.T.; Haug, C.; Neumann, C.; Sombke, A.; Hörnig, M.K. Early post-embryonic polyxenidan millipedes from Saxonian amber (Eocene). Bull. Geosci. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Haug, C.; Haug, J.T. Methods and practices in paleo-evo-devo. In Evolutionary Developmental Biology: A Reference Guide; Nuño de la Rosa, L., Müller, G.B., Eds.; Springer: Cham, Switzerland, 2021; pp. 1151–1164. [Google Scholar] [CrossRef]
- Haug, J.T.; Haug, C. Beetle larvae with unusually large terminal ends and a fossil that beats them all (Scraptiidae, Coleoptera). PeerJ 2019, 7, e7871. [Google Scholar] [CrossRef] [PubMed]
- Zippel, A.; Haug, C.; Hoffeins, C.; Hoffeins, H.-W.; Haug, J.T. Expanding the record of larvae of false flower beetles with prominent terminal ends. Riv. Ital. Paleontol. Stratigr. 2022, 128, 81–104. [Google Scholar] [CrossRef] [PubMed]
- Haug, J.T.; Engel, M.S.; Mendes dos Santos, P.; Haug, G.T.; Müller, P.; Haug, C. Declining morphological diversity in snakefly larvae during last 100 million years. PalZ 2022, 96, 749–780. [Google Scholar] [CrossRef]
- Haug, C.; Braig, F.; Haug, J.T. Quantitative analysis of lacewing larvae over more than 100 million years reveals a complex pattern of loss of morphological diversity. Sci. Rep. 2023, 13, 6127. [Google Scholar] [CrossRef] [PubMed]
- David, J. Diplopoda—ecology. In Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda; Minelli, A., Ed.; Brill: Leiden, The Netherlands, 2015; Volume 2, pp. 303–327. [Google Scholar] [CrossRef]
- Makarov, S.E. Diplopoda—integument. In Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda; Minelli, A., Ed.; Brill: Leiden, The Netherlands, 2015; Volume 2, pp. 69–99. [Google Scholar] [CrossRef]
- Shear, W.A. The chemical defenses of millipedes (Diplopoda): Biochemistry, physiology and ecology. Biochem. Syst. Ecol. 2015, 61, 78–117. [Google Scholar] [CrossRef]
- Pocock, R.I. Res ligusticae. XXI. Contributions to the knowledge of the Diplopoda of Liguria. Ann. Del Mus. Civ. Di Stor. Nat. Di Genova 1894, 2, 505–525. [Google Scholar]
- Brölemann, H.W. Macroxenus, nouveau genre de Myriapodes Psélaphognates. Bull. Soc. Hist. Nat. Afr. Nord 1917, 8, 114–118. (In French) [Google Scholar]
- Brandão, C.R.F.; Diniz, J.L.M.; Tomotake, E.M. Thaumatomyrmex strips millipedes for prey: A novel predatory behaviour in ants, and the first case of sympatry in the genus (Hymenoptera: Formicidae). Insectes Soc. 1991, 38, 335–344. [Google Scholar] [CrossRef]
- Rabeling, C.; Verhaagh, M.; Garcia, M.V. Observations on the specialized predatory behavior of the pitchfork-mandibled Ponerine ant Thaumatomyrmex paludis (Hymenoptera: Formicidae). Breviora 2012, 533, 1–8. [Google Scholar] [CrossRef]
- Klein, J.A.; Beckage, N.E. Comparative suitability of Trogoderma variabile and T. glabrum (Coleoptera: Dermestidae) as hosts for the ectoparasite Laelius pedatus (Hymenoptera: Bethylidae). Ann. Entomol. Soc. Am. 1990, 83, 809–816. [Google Scholar] [CrossRef]
- Ma, M.; Burkholder, W.E.; Carlson, S.D. Supra-anal organ: A defensive mechanism of the furniture carpet beetle, Anthrenus flavipes (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 1978, 71, 718–723. [Google Scholar] [CrossRef]
- Reitter, E. Fauna Germanica. Die Käfer des Deutschen Reichs; Lutz’ Verlag: Stuttgart, Germany, 1911; III. Band; 564p. (In German) [Google Scholar]
- Eisner, T.; Eisner, M.; Deyrup, M. Millipede defense: Use of detachable bristles to entangle ants. Proc. Natl. Acad. Sci. USA 1996, 93, 10848–10851. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, S.; Yamazaki, K. Caterpillar hair as a physical barrier against invertebrate predators. Behav. Ecol. 2014, 25, 975–983. [Google Scholar] [CrossRef]
- Kageyama, A.; Sugiura, S. Caterpillar hairs as an anti-parasitoid defence. Sci. Nat.-Naturwissenschaften 2016, 103, 86. [Google Scholar] [CrossRef] [PubMed]
- Deml, R.; Dettner, K. Chemical defence of emperor moths and tussock moths (Lepidoptera: Saturniidae, Lymantriidae). Entomol. Gen. 1997, 21, 225–251. [Google Scholar] [CrossRef]
- Smedley, S.R.; Schroeder, F.C.; Weibel, D.B.; Meinwald, J.; Lafleur, K.A.; Renwick, J.A.; Rutowski, R.; Eisner, T. Mayolenes: Labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proc. Natl. Acad. Sci. USA 2002, 99, 6822–6827. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, F.C.; del Campo, M.L.; Grant, J.B.; Weibel, D.B.; Smedley, S.R.; Bolton, K.L.; Meinwald, J.; Eisner, T. Pinoresinol: A lignol of plant origin serving for defense in a caterpillar. Proc. Natl. Acad. Sci. USA 2006, 103, 15497–15501. [Google Scholar] [CrossRef] [PubMed]
- Gentry, G.L.; Dyer, L.A. On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 2002, 83, 3108–3119. [Google Scholar] [CrossRef]
- Castellanos, I.; Barbosa, P.; Zuria, I.; Tammaru, T.; Christman, M.C. Contact with caterpillar hairs triggers predator-specific defensive responses. Behav. Ecol. 2011, 22, 1020–1025. [Google Scholar] [CrossRef]
- Lichter-Marck, I.H.; Wylde, M.; Aaron, E.; Oliver, J.C.; Singer, M.S. The struggle for safety: Effectiveness of caterpillar defenses against bird predation. Oikos 2015, 124, 525–533. [Google Scholar] [CrossRef]
- Barber, N.A.; Marquis, R.J.; Tori, W.P. Invasive prey impacts the abundance and distribution of native predators. Ecology 2008, 89, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, C. Maintenance of Variation in Warning Signals Under Opposing Selection Pressures. Ph.D. Thesis, Faculty of Mathematics and Science of the University of Jyväskylä, Jyväskylä, Finnland, 2008. Available online: http://urn.fi/URN:ISBN:978-951-39-3444-6 (accessed on 29 June 2025).
- Murphy, S.M.; Leahy, S.M.; Williams, L.S.; Lill, J.T. Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. Behav. Ecol. 2010, 21, 153–160. [Google Scholar] [CrossRef]
- Villas-Boas, I.M.; Bonfá, G.; Tambourgi, D.V. Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon 2018, 153, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Poinar, G., Jr.; Vega, F.E. Poisonous setae on a Baltic amber caterpillar. Arthropod Struct. Dev. 2019, 51, 37–40. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Cadre, J.; Gauweiler, J.; Haug, J.T.; Arce, S.I.; Baranov, V.; Hammel, J.U.; Haug, C.; Kaulfuss, U.; Kiesmüller, C.; McKellar, R.C.; et al. New Amber Fossils Indicate That Larvae of Dermestidae Had Longer Defensive Structures in the Past. Insects 2025, 16, 710. https://doi.org/10.3390/insects16070710
Le Cadre J, Gauweiler J, Haug JT, Arce SI, Baranov V, Hammel JU, Haug C, Kaulfuss U, Kiesmüller C, McKellar RC, et al. New Amber Fossils Indicate That Larvae of Dermestidae Had Longer Defensive Structures in the Past. Insects. 2025; 16(7):710. https://doi.org/10.3390/insects16070710
Chicago/Turabian StyleLe Cadre, Jéhan, Joshua Gauweiler, Joachim T. Haug, Sofía I. Arce, Viktor Baranov, Jörg U. Hammel, Carolin Haug, Uwe Kaulfuss, Christine Kiesmüller, Ryan C. McKellar, and et al. 2025. "New Amber Fossils Indicate That Larvae of Dermestidae Had Longer Defensive Structures in the Past" Insects 16, no. 7: 710. https://doi.org/10.3390/insects16070710
APA StyleLe Cadre, J., Gauweiler, J., Haug, J. T., Arce, S. I., Baranov, V., Hammel, J. U., Haug, C., Kaulfuss, U., Kiesmüller, C., McKellar, R. C., Müller, P., Hörnig, M. K., & Zippel, A. (2025). New Amber Fossils Indicate That Larvae of Dermestidae Had Longer Defensive Structures in the Past. Insects, 16(7), 710. https://doi.org/10.3390/insects16070710