Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Oviposition Behavior of T. ovigastra
2.3. Offspring Number and Sex Ratio
2.4. Developmental Duration
2.5. Longevity
2.6. High and Low Temperature Resistance
2.7. Starvation Resistance
2.8. Desiccation Resistance
2.9. Statistical Analysis
3. Results
3.1. Oviposition Behavior of T. ovigastra
3.2. Offspring Number and Sex Ratio
3.3. Developmental Duration and Longevity
3.4. High and Low Temperature Resistance
3.5. Starvation Resistance
3.6. Desiccation Resistance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liquido, N.J.; Mcquate, G.T.; Birnbaum, A.L.; Hanlin, M.A.; Nakamichi, K.A.; Inskeep, J.R.; Ching, A.J.; Marnell, S.A.; Kurashima, R.S. A Review of Recorded Host Plants of Oriental Fruit Fly, Bactrocera (Bactrocera) dorsalis (Hendel) (Diptera: Tephritidae), Version 3.0. USDA CPHST Online Database. 2017. Available online: https://coffhi.cphst.org/ (accessed on 23 June 2025).
- Zhao, Z.; Carey, J.R.; Li, Z. The global epidemic of Bactrocera pests: Mixed-species invasions and risk assessment. Annu. Rev. Entomol. 2023, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Tan, X.M.; Qi, F.J.; Teng, Z.W.; Fan, Y.J.; Shang, M.Q.; Lu, Z.Z.; Wan, F.H.; Zhou, H.X. The host shift of Bactrocera dorsalis: Early warning of the risk of damage to the fruit industry in northern China. Entomol. Gen. 2022, 42, 691–699. [Google Scholar] [CrossRef]
- Zeng, Y.; Reddy, G.V.P.; Li, Z.; Qin, Y.; Wang, Y.; Pan, X.; Jiang, F.; Gao, F.; Zhao, Z.H. Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). J. Appl. Entomol. 2019, 143, 165–176. [Google Scholar] [CrossRef]
- Liang, L.; Li, Y. Risk Analysis of Bactrocera dorsalis (Hendel) in Shaanxi Province. Shaanxi For. Sci. Technol. 2017, 2, 46–48. Available online: https://www.cnki.net/ (accessed on 23 June 2025). (In Chinese).
- Zhu, Y.F.; Qi, F.J.; Tan, X.M.; Zhang, T.; Teng, Z.W.; Fan, Y.J.; Wan, F.H.; Zhou, H.X. Use of age-stage, two-sex life table to compare the fitness of Bactrocera dorsalis (Diptera: Tephritidae) on northern and southern host fruits in China. Insects 2022, 13, 258. [Google Scholar] [CrossRef]
- Jaffar, S.; Rizvi, S.A.H.; Lu, Y. Understanding the invasion, ecological adaptations, and management strategies of Bactrocera dorsalis in China: A review. Horticulturae 2023, 9, 1004. [Google Scholar] [CrossRef]
- Fang, Y.; Kang, F.; Zhan, G.; Ma, C.; Li, Y.; Wang, L.; Wei, Y.; Gao, X.; Li, Z.; Wang, Y. The effects of a cold disinfestation on Bactrocera dorsalis survival and navel orange quality. Insects 2019, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, D.; Wan, L.; Hu, Z.; He, T.; Wang, J.; Deng, S.; Wang, X. Assessment of attractancy and safeness of (E)-coniferyl alcohol for management of female adults of oriental fruit fly, Bactrocera dorsalis (Hendel). Pest Manag. Sci. 2022, 78, 1018–1028. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, Z.; Zhang, Y.; Li, D. Ability of Spalangia endius (Hymenoptera: Pteromalidae) to parasitize Bactrocera dorsalis (Diptera: Tephritidae) after switching hosts. Insects 2021, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gu, Q.; Niu, J.; Wang, J. The RNA virome and its dynamics in an invasive fruit fly, Bactrocera dorsalis, imply interactions between host and viruses. Microb. Ecol. 2020, 80, 423–434. [Google Scholar] [CrossRef]
- Wang, D.; Liang, Q.; Chen, M.; Ye, H.; Liao, Y.; Yin, J.; Lv, L.; Lei, Y.; Cai, D.; Jaleel, W. Susceptibility of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) pupae to entomopathogenic fungi. Appl. Entomol. Zool. 2021, 56, 269–275. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, P.; Wang, B.; Liu, X.; Lin, J.; Hua, R.; Zhang, H.; Yi, C.; Song, X.; Ji, Q.; et al. Manipulation of gut symbionts for improving the sterile insect technique: Quality parameters of Bactrocera dorsalis (Diptera: Tephritidae) genetic sexing strain males after feeding on bacteria-enriched diets. J. Econ. Entomol. 2021, 114, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zeng, L.; Lin, Y.; Lu, Y.; Liang, G. Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. Pest Manag. Sci. 2011, 67, 370–376. [Google Scholar] [CrossRef]
- Saunders, T.E.; Ward, D.F. Variation in the diversity and richness of parasitoid wasps based on sampling effort. Peerj 2018, 6, e4642. [Google Scholar] [CrossRef] [PubMed]
- Van Driesche, R.G.; Carruthers, R.I.; Center, T.; Hoddle, M.S.; Hough-Goldstein, J.; Morin, L.; Smith, L.; Wagner, D.L.; Blossey, B.; Brancatini, V.; et al. Classical biological control for the protection of natural ecosystems. Biol. Control 2010, 54, S2–S33. [Google Scholar] [CrossRef]
- Abram, P.K.; Labbe, R.M.; Mason, P.G. Ranking the host range of biological control agents with quantitative metrics of taxonomic specificity. Biol. Control 2021, 152, 104427. [Google Scholar] [CrossRef]
- Wang, X.; Jennings, D.E.; Duan, J.J. Trade-offs in parasitism efficiency and brood size mediate parasitoid coexistence, with implications for biological control of the invasive emerald ash borer. J. Appl. Ecol. 2015, 52, 1255–1263. [Google Scholar] [CrossRef]
- Li, S.G.; Dong, C.L.; Zhu, F.; Yang, F.; Lu, M.X.; Du, Y.Z. Development and temperature-induced expression of a HSP90 gene lacking introns in Cotesia chilonis (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am. 2022, 115, 391–399. [Google Scholar] [CrossRef]
- Lirakis, M.; Magalhaes, S. Does experimental evolution produce better biological control agents? A critical review of the evidence. Entomol. Exp. Appl. 2019, 167, 584–597. [Google Scholar] [CrossRef]
- Chen, J.; Fang, G.; Pang, L.; Sheng, Y.; Zhang, Q.; Zhou, Y.; Zhou, S.; Lu, Y.; Liu, Z.; Zhang, Y.; et al. Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour. Nat. Commun. 2021, 12, 5489. [Google Scholar] [CrossRef]
- Teng, Z.W.; Liu, Y.J.; Jiang, M.H.; Jiang, C.; Zhang, Y.K.; Chen, C.; Wan, F.H.; Zhou, H.X. Artificially selected starvation-resistant lines of Pachycrepoideus vindemmiae with multiple beneficial traits: Shedding new light on stress resistance mechanisms and biological control applications of natural enemies. J. Pest Sci. 2025, 98, 1497–1517. [Google Scholar] [CrossRef]
- Stiling, P.; Cornelissen, T. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 2005, 34, 236–246. [Google Scholar] [CrossRef]
- Segoli, M.; Abram, P.K.; Ellers, J.; Greenbaum, G.; Hardy, I.C.W.; Heimpel, G.E.; Keasar, T.; Ode, P.J.; Sadeh, A.; Wajnberg, E. Trait-based approaches to predicting biological control success: Challenges and prospects. Trends Ecol. Evol. 2023, 38, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Sureshan, P.M.; Narendran, T.C. On the Indian Species of Trichomalopsis Crawford (Hymenoptera: Chalcidoidea: Pteromalidae). J. Bombay Nat. Hist. Soc. 2001, 98, 396–405. Available online: https://www.biodiversitylibrary.org/page/48583621#page/421/mode/1up (accessed on 8 May 2025).
- Floate, K.D.; Spooner, R.W. Parasitization by pteromalid wasps (Hymenoptera) of freeze-killed house fly (Diptera: Muscidae) puparia at varying depths in media. J. Econ. Entomol. 2002, 95, 908–911. [Google Scholar] [CrossRef]
- Floate, K.D. Production of filth fly parasitoids (Hymenoptera: Pteromalidae) on fresh and on freeze-killed and stored house fly pupae. Biocontrol Sci. Technol. 2002, 12, 595–603. [Google Scholar] [CrossRef]
- Floate, K.D.; Skovgaringrd, H. Winter survival of nuisance fly parasitoids (Hymenoptera: Pteromalidae) in Canada and Denmark. Bull. Entomol. Res. 2004, 94, 331–340. [Google Scholar] [CrossRef]
- Floate, K.D. Field trials of Trichomalopsis sarcophagae (Hymenoptera: Pteromalidae) in cattle feedlots: A potential biocontrol agent of filth flies (Diptera: Muscidae). Can. Entomol. 2003, 135, 599–608. [Google Scholar] [CrossRef]
- Sureshan, P.M.; Kumar, J.B.N.; Nikhil, K.; Kumar, V. A new species of Trichomalopsis Crawford (Hymenoptera: Pteromalidae), hyperparasitoid of silkworm uzi fly, Exorista bombycis (Louis) (Diptera: Tachinidae), from Karnataka, India. J. Biol. Control 2014, 28, 180–184. [Google Scholar]
- Tormos, J.; Frago, E.; Selfa, J.; Asis, J.D.; Pujade-Villar, J.; Guara, M. Description of the final instar of Trichomalopsis peregrina (Hymenoptera, Pteromalidae), with data and comments on the preimaginal stages. Fla. Entomol. 2007, 90, 180–183. [Google Scholar] [CrossRef]
- Mao, N.; Tang, P.; Tian, H.; Shi, M.; Chen, X. General morphology and ultrastructure of the female reproductive apparatus of Trichomalopsis shirakii Crawford (Hymenoptera, Pteromalidae). Microsc. Res. Techniq. 2016, 79, 625–636. [Google Scholar] [CrossRef]
- Pagac, A.A.; Geden, C.J.; Burgess, E.R.; Riggs, M.R.; Machtinger, E.T. Filth fly parasitoid (Hymenoptera: Pteromalidae) monitoring techniques and species composition in poultry layer facilities. J. Med. Entomol. 2022, 59, 2006–2012. [Google Scholar] [CrossRef]
- Gibson, G.A.P.; Floate, K. Species of Trichomalopsis (Hymenoptera: Pteromalidae) associated with filth flies (Diptera: Muscidae) in North America. Can. Entomol. 2001, 133, 49–85. [Google Scholar] [CrossRef]
- Kumar, J.B.N.; Manjunath, D.; Sivaprasad, V. Reproductive performance of Trichomalopsis uziae as influenced by density of its female and host (Exorista bombycis) with a note on host exposure duration for parasitism. J. Biol. Control 2019, 33, 109–116. [Google Scholar] [CrossRef]
- Nakamatsu, Y.; Harvey, J.A.; Tanaka, T. Intraspecific competition between adult females of the hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera: Chelonidae), for domination of Cotesia kariyai (Hymenoptera: Braconidae) cocoons. Ann. Entomol. Soc. Am. 2009, 102, 172–180. [Google Scholar] [CrossRef]
- Ahmad, M.J.; Ahmad, S.B.; Khan, A.A. Impact of hyperparasitism on the dynamics of Apanteles sp. (Hymenoptera: Braconidae) against rice skipper, Parnara guttata Bremer and Grey in Anantnag, Kashmir. J. Biol. Control 2009, 23, 121–125. [Google Scholar]
- van Noort, S. WaspWeb: Hymenoptera of the World. 2025. Available online: http://waspweb.org/Chalcidoidea/Pteromalidae/Pteromalinae/Pteromalini/Pachycrepoideus/Pachycrepoideus_vindemmiae.htm (accessed on 23 June 2025).
- Wang, X.; Messing, R. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and potential non-target impact. Biol. Control 2004, 31, 227–236. [Google Scholar] [CrossRef]
- Hogg, B.N.; Lee, J.C.; Rogers, M.A.; Worth, L.; Nieto, D.J.; Stahl, J.M.; Daane, K.M. Releases of the parasitoid Pachycrepoideus vindemmiae for augmentative biological control of spotted wing drosophila, Drosophila suzukii. Biol. Control 2022, 168, 104865. [Google Scholar] [CrossRef]
- Garcez, A.M.; Krüger, A.P.; Nava, D.E. Demographic parameters of Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) reared on Drosophila suzukii (Diptera: Drosophilidae), Ceratitis capitata (Diptera: Tephritidae), and Anastrepha fraterculus (Diptera: Tephritidae) puparia. J. Econ. Entomol. 2024, toae261. [Google Scholar] [CrossRef]
- Teng, Z.W.; Huo, M.; Zhou, Y.; Zhou, Y.; Liu, Y.; Lin, Y.; Zhang, Q.; Zhang, Z.; Wan, F.; Zhou, H. Circadian activity and clock genes in Pachycrepoideus vindemmiae: Implications for field applications and circadian clock mechanisms of parasitoid wasps. Insects 2023, 14, 486. [Google Scholar] [CrossRef]
- Tormos, J.; Beitia, F.; Bockmann, E.A.; Asis, J.D.; Fernandez, S. The preimaginal phases and development of Pachycrepoideus vindemmiae (Hymenoptera, Pteromalidae) on mediterranean fruit fly, Ceratitis capitata (Diptera, Tephritidae). Microsc. Microanal. 2009, 15, 422–434. [Google Scholar] [CrossRef]
- Yang, L.; Wan, B.; Wang, B.; Liu, M.; Fang, Q.; Song, Q.; Ye, G. The pupal ectoparasitoid Pachycrepoideus vindemmiae regulates cellular and humoral immunity of host Drosophila melanogaster. Front. Physiol. 2019, 10, 01282. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Hogg, B.N.; Biondi, A.; Daane, K.M. Plasticity of body growth and development in two cosmopolitan pupal parasitoids. Biol. Control 2021, 163, 104738. [Google Scholar] [CrossRef]
- Gibson, G.A.P.; Floate, K.D. Filth fly parasitoids on dairy farms in Ontario and Quebec, Canada. Can. Entomol. 2004, 136, 407–417. [Google Scholar] [CrossRef]
- Petersen, J.J.; Watson, D.W.; Pawson, B.M. Evaluation of Muscidifurax zaraptor and Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) for controlling flies associated with confined beef cattle. Biol. Control 1992, 2, 44–50. [Google Scholar] [CrossRef]
- Pickens, L.G.; Miller, R.W.; Centala, M.M. Biology, population dynamics, and host finding efficiency of Pachycrepoideus vindemiae in a box stall and a poultry house. Environ. Entomol. 1975, 4, 975–979. [Google Scholar] [CrossRef]
- Wang, L.; Wen, B.; Guo, S.; Han, Y.; Deng, Z.; Ding, Q.; Li, X. Identification and characterization of ATP-binding cassette transporters involved in chlorantraniliprole tolerance of model insect Drosophila melanogaster and agricultural pest Spodoptera frugiperda. Pestic. Biochem. Phys. 2024, 206, 5094. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, L.; Fang, Q.; Stanley, D.W.; Ye, G. Cellular and humoral immune interactions between Drosophila and its parasitoids. Insect Sci. 2021, 28, 1208–1227. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://www.R-project.org/ (accessed on 6 April 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Therneau, T. A Package for Survival Analysis in R. 2024. Available online: https://github.com/therneau/survival (accessed on 6 April 2025).
- Kassambara, A.; Kosinski, M.; Biecek, P. survminer: A Package for Drawing Survival Curves Using ‘ggplot2’. R Package Version 0.5.0. 2024. Available online: https://rpkgs.datanovia.com/survminer/index.html (accessed on 6 April 2025).
- DiTomaso, J.M.; Van Steenwyk, R.A.; Nowierski, R.M.; Vollmer, J.L.; Lane, E.; Chilton, E.; Burch, P.L.; Cowan, P.E.; Zimmerman, K.; Dionigi, C.P. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach. Pest Manag. Sci. 2017, 73, 9–13. [Google Scholar] [CrossRef]
- Daane, K.M.; Wang, X.; Biondi, A.; Miller, B.; Miller, J.C.; Riedl, H.; Shearer, P.W.; Guerrieri, E.; Giorgini, M.; Buffington, M.; et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 2016, 89, 823–835. [Google Scholar] [CrossRef]
- Cini, A.; Ioriatti, C.; Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 2012, 65, 149–160. Available online: http://hdl.handle.net/10449/21029 (accessed on 6 April 2025).
- Stacconi, M.V.R.; Panel, A.; Baser, N.; Ioriatti, C.; Pantezzi, T.; Anfora, G. Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol. Control 2017, 112, 20–27. [Google Scholar] [CrossRef]
- Chabert, S.; Allemand, R.; Poyet, M.; Eslin, P.; Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 2012, 63, 40–47. [Google Scholar] [CrossRef]
- Rossi Stacconi, M.V.; Buffington, M.; Daane, K.M.; Dalton, D.T.; Grassi, A.; Kaçar, G.; Miller, B.; Miller, J.C.; Baser, N.; Ioriatti, C.; et al. Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol. Control 2015, 84, 28–35. [Google Scholar] [CrossRef]
- Wang, X.; Kaçar, G.; Biondi, A.; Daane, K.M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. BioControl 2016, 61, 387–397. [Google Scholar] [CrossRef]
- Matray, S.; Herz, A. Flowering plants serve nutritional needs of Ascogaster quadridentata (Hymenoptera: Braconidae), a key parasitoid of codling moth. Biol. Control 2022, 171, 104950. [Google Scholar] [CrossRef]
- Furtado, C.; Belo, A.; Nunes, F.; Ganhão, E.; Müller, C.; Torres, L.; Rei, F. Evaluating potential olive orchard sugar food sources for the olive fly parasitoid Psyttalia concolor. BioControl 2016, 61, 473–483. [Google Scholar] [CrossRef]
- Géneau, C.E.; Wäckers, F.L.; Luka, H.; Daniel, C.; Balmer, O. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl. Ecol. 2012, 13, 85–93. [Google Scholar] [CrossRef]
- Giron, D.; Pincebourde, S.; Casas, J. Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiol. Entomol. 2004, 29, 436–442. [Google Scholar] [CrossRef]
- Seko, T.; Miura, K. Extension of patch residence time of a biocontrol agent by selective breeding contributes to its early establishment and suppression of a pest population. J. Pest Sci. 2023, 97, 1269–1280. [Google Scholar] [CrossRef]
- Takai, N.; Nakamatsu, Y.; Harvey, J.A.; Miura, K.; Tanaka, T. Brood attending by females of the hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera: Pteromalidae) on cocoon clusters of its host, Cotesia kariyai (Hymenoptera: Braconidae) and its effects on reproduction, development and survival. Eur. J. Entomol. 2008, 105, 855–862. [Google Scholar] [CrossRef]
- Schooler, S.S.; De Barro, P.; Ives, A.R. The potential for hyperparasitism to compromise biological control: Why don’t hyperparasitoids drive their primary parasitoid hosts extinct? Biol. Control 2011, 58, 167–173. [Google Scholar] [CrossRef]
- McDonald, R.C.; Kok, L.T. Hyperparasites attacking Cotesia glomerata (L.) and Cotesia rubecula (Marshall) (Hymenoptera: Braconidae) in Southwestern Virginia. Biol. Control 1991, 1, 170–175. [Google Scholar] [CrossRef]
- Nofemela, R.S. The effect of obligate hyperparasitoids on biological control: Differential vulnerability of primary parasitoids to hyperparasitism can mitigate trophic cascades. Biol. Control 2013, 65, 218–224. [Google Scholar] [CrossRef]
- Pérez-Lachaud, G.; Batchelor, T.P.; Hardy, I.C.W. Wasp eat wasp: Facultative hyperparasitism and intra-guild predation by bethylid wasps. Biol. Control 2004, 30, 149–155. [Google Scholar] [CrossRef]
Response Variable | Explanatory Variable | Odds Ratio | 95% Confidence Interval | p |
---|---|---|---|---|
Emerging parasitoid count | Intercept | 0.353 | 0.287–0.434 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 2.494 | 2.020–3.080 | <0.001 | |
Host pupa age (day) | 1.014 | 0.923–1.115 | 0.763 | |
Parasitoid sex ratio | Intercept | 1.567 | 1.159–1.308 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 0.955 | 0.848–1.078 | 0.445 | |
Host pupa age (day) | 1.012 | 0.957–1.069 | 0.673 |
Parasitoid Adult Age (Day) | Explanatory Variable | Odds Ratio | 95% Confidence Interval | p |
---|---|---|---|---|
2 | Intercept | 0.709 | 0.534–0.938 | 0.017 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 0.679 | 0.450–1.020 | 0.063 | |
3 | Intercept | 1.740 | 1.309–2.330 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 0.899 | 0.599–1.347 | 0.606 | |
4 | Intercept | 1.597 | 1.205–2.132 | 0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 0.797 | 0.534–1.187 | 0.264 | |
5 | Intercept | 1.788 | 1.24–2.539 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.454 | 0.896–2.408 | 0.115 | |
6 | Intercept | 1.817 | 1.356–2.483 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 2.687 | 1.687–4.408 | <0.001 | |
7 | Intercept | 1.597 | 1.205–2.131 | 0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.043 | 0.697–1.563 | 0.837 | |
8 | Intercept | 0.681 | 0.511–0.901 | 0.008 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.988 | 1.338–2.974 | <0.001 | |
9 | Intercept | 0.709 | 0.534–0.938 | 0.017 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.794 | 1.209–2.673 | 0.004 | |
10 | Intercept | 0.724 | 0.543–0.959 | 0.024 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.907 | 1.282–2.865 | 0.001 | |
11 | Intercept | 0.724 | 0.545–0.957 | 0.024 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.907 | 1.284–2.844 | 0.001 | |
12 | Intercept | 0.923 | 0.699–1.218 | 0.572 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 1.222 | 0.825–1.811 | 0.318 | |
13 | Intercept | 0.399 | 0.291–0.536 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 3.394 | 2.249–5.170 | <0.001 | |
14 | Intercept | 0.297 | 0.204–0.418 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 4.479 | 2.820–7.376 | <0.001 | |
15 | Intercept | 0.149 | 0.097–0.221 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 8.347 | 5.144–13.955 | <0.001 | |
16 | Intercept | 0.143 | 0.092–0.213 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 9.092 | 5.573–15.403 | <0.001 | |
17 | Intercept | 0.136 | 0.087–0.205 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 11.470 | 6.978–19.502 | <0.001 | |
18 | Intercept | 0.132 | 0.078–0.208 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 13.986 | 7.843–27.115 | <0.001 | |
19 | Intercept | 0.130 | 0.082–0.196 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 11.787 | 7.131–20.225 | <0.001 | |
20 | Intercept | 0.130 | 0.082–0.196 | <0.001 |
Parasitoid species: T. ovigastra vs. P. vindemiae | 13.103 | 7.914–22.497 | <0.001 |
Explanatory Variable | df | Hazard Ratio | 95% Confidence Interval | p |
---|---|---|---|---|
Parasitoid species: T. ovigastra vs. P. vindemiae | 1 | 265.363 | 33.117–345.399 | <0.001 |
Sex: Female vs. Male | 1 | 0.366 | 0.207–0.639 | <0.001 |
Response Variable | Explanatory Variable | χ2 | df | p | Odds Ratio |
---|---|---|---|---|---|
Low-temperature resistance in 1-day-old adult wasps 1 | Parasitoid species: T. ovigastra vs. P. vindemiae | 1.324 | 1 | 0.250 | 0.367 |
Sex: Female vs. Male | 0.158 | 1 | 0.691 | 1.378 | |
Low-temperature resistance in 15-day-old adult wasps 2 | Parasitoid species: T. ovigastra vs. P. vindemiae | 12.811 | 1 | <0.001 | 0.110 |
Sex: Female vs. Male | 0.293 | 1 | 0.588 | 0.744 | |
Low-temperature resistance in 30-day-old adult wasps 3 | Parasitoid species: T. ovigastra vs. P. vindemiae | 16.499 | 1 | <0.001 | 0.080 |
Sex: Female vs. Male | 0.668 | 1 | 0.414 | 0.637 | |
High-temperature resistance in 1-day-old adult wasps 4 | Parasitoid species: T. ovigastra vs. P. vindemiae | 24.782 | 1 | <0.001 | 0.018 |
Sex: Female vs. Male | <0.001 | 1 | 1 | 1 | |
High-temperature resistance in 15-day-old adult wasps 5 | Parasitoid species: T. ovigastra vs. P. vindemiae | 26.025 | 1 | <0.001 | 0.003 |
Sex: Female vs. Male | 1.654 | 1 | 0.198 | 4.349 | |
High-temperature resistance in 30-day-old adult wasps 6 | Parasitoid species: T. ovigastra vs. P. vindemiae | 27.519 | 1 | <0.001 | 0.002 |
Sex: Female vs. Male | 0.956 | 1 | 0.328 | 3.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Z.; Wang, Y.; Jiang, M.; Zhang, Y.; Wang, X.; Wan, F.; Zhou, H. Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis. Insects 2025, 16, 708. https://doi.org/10.3390/insects16070708
Teng Z, Wang Y, Jiang M, Zhang Y, Wang X, Wan F, Zhou H. Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis. Insects. 2025; 16(7):708. https://doi.org/10.3390/insects16070708
Chicago/Turabian StyleTeng, Ziwen, Yiting Wang, Minghao Jiang, Yikun Zhang, Xintong Wang, Fanghao Wan, and Hongxu Zhou. 2025. "Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis" Insects 16, no. 7: 708. https://doi.org/10.3390/insects16070708
APA StyleTeng, Z., Wang, Y., Jiang, M., Zhang, Y., Wang, X., Wan, F., & Zhou, H. (2025). Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis. Insects, 16(7), 708. https://doi.org/10.3390/insects16070708