CRISPR/Cas9-Mediated Knockout of the Corazonin Gene Indicates Its Regulation on the Cuticle Development of Desert Locusts (Schistocerca gregaria)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Multi-Sequence Alignment and Phylogenetic Tree Construction
2.2. Genome Structure Analysis and Target Site Design of SgCrz
2.3. Animals
2.4. Synthesis and Verification of the sgRNA In Vitro
2.5. Microinjection
2.6. Mutant Screening and Homozygous Mutant Acquisition
2.7. Off-Target Analysis
2.8. Analysis of Development Duration and Fertility
2.9. Hematoxylin and Eosin (H&E) Staining
2.10. Chitin Staining
2.11. Image Acquisition and Statistical Analysis
3. Results
3.1. Phylogenetic Analysis and sgRNA Target Design
3.2. The Workflow of Gene Editing in Desert Locust
3.3. G0 Mutant Screening
3.4. Establishment of Homozygous SgCrz−/− Mutant Line
3.5. Effects of SgCrz Knockout on the Life-Span and Reproductive Traits
3.6. SgCrz−/− Mutants Exhibited Compact but Thinner Cuticles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kimathi, E.; Tonnang, H.E.Z.; Subramanian, S.; Cressman, K.; Abdel-Rahman, E.M.; Tesfayohannes, M.; Niassy, S.; Torto, B.; Dubois, T.; Tanga, C.M.; et al. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 2020, 10, 11937. [Google Scholar] [CrossRef]
- Chang, X.; Feng, S.; Ullah, F.; Zhang, Y.; Zhang, Y.; Qin, Y.; Nderitu, J.H.; Dong, Y.; Huang, W.; Zhang, Z.; et al. Adapting distribution patterns of desert locusts, Schistocerca gregaria in response to global climate change. Bull. Entomol. Res. 2025, 115, 84–92. [Google Scholar] [CrossRef]
- Mamo, D.K.; Bedane, D.S. Modelling the effect of desert locust infestation on crop production with intervention measures. Heliyon 2021, 7, e07685. [Google Scholar] [CrossRef]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017, 171, 470.E8–480.E8. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, L.; Tang, M.; Liu, J.; Liu, H.; Yang, H.; Fan, S.; Terzaghi, W.; Wang, H.; Hua, W. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 2020, 18, 644–654. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liu, C.; Shi, Z.; Pang, L.; Chen, C.; Chen, Y.; Pan, R.; Zhou, W.; Chen, X.X.; et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 2022, 185, 2975.E10–2987.E10. [Google Scholar] [CrossRef]
- Di Cristina, G.; Dirksen, E.; Altenhein, B.; Büschges, A.; Korsching, S.I. Pioneering genome editing in parthenogenetic stick insects: CRISPR/Cas9-mediated gene knockout in Medauroidea extradentata. Sci. Rep. 2025, 15, 2584. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Gupta, D.; Bhattacharjee, O.; Mandal, D.; Sen, M.K.; Dey, D.; Dasgupta, A.; Kazi, T.A.; Gupta, R.; Sinharoy, S.; Acharya, K.; et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci. 2019, 232, 116636. [Google Scholar] [CrossRef]
- Drost, J.; van Boxtel, R.; Blokzijl, F.; Mizutani, T.; Sasaki, N.; Sasselli, V.; de Ligt, J.; Behjati, S.; Grolleman, J.E.; van Wezel, T.; et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 2017, 358, 234–238. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, S.; Zhan, Y.; Zhang, X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell. Mol. Biol. Lett. 2024, 29, 52. [Google Scholar] [CrossRef]
- Zhu, M.; Sumana, S.L.; Abdullateef, M.M.; Falayi, O.C.; Shui, Y.; Zhang, C.; Zhu, J.; Su, S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int. J. Mol. Sci. 2024, 25, 9299. [Google Scholar] [CrossRef]
- Bexte, T.; Albinger, N.; Al Ajami, A.; Wendel, P.; Buchinger, L.; Gessner, A.; Alzubi, J.; Särchen, V.; Vogler, M.; Rasheed, H.M.; et al. CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells. Nat. Commun. 2024, 15, 8439. [Google Scholar] [CrossRef] [PubMed]
- Raudstein, M.; Peñaranda, M.M.D.; Kjærner-Semb, E.; Grove, S.; Morton, H.C.; Edvardsen, R.B. Generation of IgM+ B cell-deficient Atlantic salmon (Salmo salar) by CRISPR/Cas9-mediated IgM knockout. Sci. Rep. 2025, 15, 3599. [Google Scholar] [CrossRef]
- Xu, Y.; Viswanatha, R.; Sitsel, O.; Roderer, D.; Zhao, H.; Ashwood, C.; Voelcker, C.; Tian, S.; Raunser, S.; Perrimon, N.; et al. CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor. Nature 2022, 610, 349–355. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, R.G.; Ren, X.; Ewen-Campen, B.; Rajakumar, R.; Zirin, J.; Yang-Zhou, D.; Zhu, R.; Wang, F.; Mao, D.; et al. Next-generation CRISPR/Cas9 transcriptional activation in Drosophila using flySAM. Proc. Natl. Acad. Sci. USA 2018, 115, 4719–4724. [Google Scholar] [CrossRef]
- Kistler, K.E.; Vosshall, L.B.; Matthews, B.J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 2015, 11, 51–60. [Google Scholar] [CrossRef]
- Dong, S.; Dimopoulos, G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat. Commun. 2023, 14, 5773. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, G.; He, Y.; Hou, S.; Hao, K.; Xing, J.; Zhang, T.; Zhou, S. CRISPR/xCas9-mediated corazonin knockout reveals the effectiveness of xCas9 editing and the crucial role of corazonin in insect cuticle development. J. Integr. Agric. 2025, in press. [Google Scholar] [CrossRef]
- Lehmann, J.; Günzel, Y.; Khosravian, M.; Cassau, S.; Kraus, S.; Libnow, J.S.; Chang, H.; Hansson, B.S.; Breer, H.; Couzin-Fuchs, E.; et al. SNMP1 is critical for sensitive detection of the desert locust aromatic courtship inhibition pheromone phenylacetonitrile. BMC Biol. 2024, 22, 150. [Google Scholar] [CrossRef]
- Gospocic, J.; Shields, E.J.; Glastad, K.M.; Lin, Y.; Penick, C.A.; Yan, H.; Mikheyev, A.S.; Linksvayer, T.A.; Garcia, B.A.; Berger, S.L.; et al. The Neuropeptide Corazonin Controls Social Behavior and Caste Identity in Ants. Cell 2017, 170, 748–759.E12. [Google Scholar] [CrossRef]
- Kubrak, O.I.; Lushchak, O.V.; Zandawala, M.; Nässel, D.R. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 2016, 6, 160152. [Google Scholar] [CrossRef]
- Zhao, Y.; Bretz, C.A.; Hawksworth, S.A.; Hirsh, J.; Johnson, E.C. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS ONE 2010, 5, e9141. [Google Scholar] [CrossRef]
- Kapan, N.; Lushchak, O.V.; Luo, J.; Nässel, D.R. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 2012, 69, 4051–4066. [Google Scholar] [CrossRef]
- Boerjan, B.; Verleyen, P.; Huybrechts, J.; Schoofs, L.; De Loof, A. In search for a common denominator for the diverse functions of arthropod corazonin: A role in the physiology of stress? Gen. Comp. Endocrinol. 2010, 166, 222–233. [Google Scholar] [CrossRef]
- Yang, J.; Huang, H.; Yang, H.; He, X.; Jiang, X.; Shi, Y.; Alatangaole, D.; Shi, L.; Zhou, N. Specific activation of the G protein-coupled receptor BNGR-A21 by the neuropeptide corazonin from the silkworm, Bombyx mori, dually couples to the Gq and Gs signaling cascades. J. Biol. Chem. 2013, 288, 11662–11675. [Google Scholar] [CrossRef]
- Hillyer, J.F.; Estévez-Lao, T.Y.; Funkhouser, L.J.; Aluoch, V.A. Anopheles gambiae corazonin: Gene structure, expression and effect on mosquito heart physiology. Insect Mol. Biol. 2012, 21, 343–355. [Google Scholar] [CrossRef]
- Patel, H.; Orchard, I.; Veenstra, J.A.; Lange, A.B. The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen. Comp. Endocrinol. 2014, 195, 1–8. [Google Scholar] [CrossRef]
- Sugahara, R.; Tanaka, S.; Jouraku, A.; Shiotsuki, T. Functional characterization of the corazonin-encoding gene in phase polyphenism of the migratory locust, Locusta migratoria (Orthoptera: Acrididae). Appl. Entomol. Zool. 2016, 51, 225–232. [Google Scholar] [CrossRef]
- Sugahara, R.; Saeki, S.; Jouraku, A.; Shiotsuki, T.; Tanaka, S. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust. J. Insect Physiol. 2015, 79, 80–87. [Google Scholar] [CrossRef]
- Yan, Q.; He, Y.; Yue, Y.; Jie, L.; Wen, T.; Zhao, Y.; Zhang, M.; Zhang, T. Construction of Homozygous Mutants of Migratory Locust using CRISPR/Cas9 Technology. J. Vis. Exp. 2022, 181, e63629. [Google Scholar] [CrossRef]
- Whelan, J.T.; Singaravelu, R.; Wang, F.; Pelin, A.; Tamming, L.A.; Pugliese, G.; Martin, N.T.; Crupi, M.J.F.; Petryk, J.; Austin, B.; et al. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX. Front. Immunol. 2022, 13, 1050250. [Google Scholar] [CrossRef]
- Rottinghaus, A.G.; Vo, S.; Moon, T.S. Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia. Proc. Natl. Acad. Sci. USA 2023, 120, e2213154120. [Google Scholar] [CrossRef]
- Meng, X.; Jia, R.; Zhao, X.; Zhang, F.; Chen, S.; Yu, S.; Liu, X.; Dou, H.; Feng, X.; Zhang, J.; et al. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment. Nat. Commun. 2024, 15, 3773. [Google Scholar] [CrossRef] [PubMed]
- Balke-Want, H.; Keerthi, V.; Gkitsas, N.; Mancini, A.G.; Kurgan, G.L.; Fowler, C.; Xu, P.; Liu, X.; Asano, K.; Patel, S.; et al. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol. Cancer 2023, 22, 100. [Google Scholar] [CrossRef]
- Naeem, M.; Alkhnbashi, O.S. Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects. Int. J. Mol. Sci. 2023, 24, 6261. [Google Scholar] [CrossRef]
- Ito, Y.; Inoue, S.; Nakashima, T.; Zhang, H.; Li, Y.; Kasuya, H.; Matsukawa, T.; Wu, Z.; Yoshikawa, T.; Kataoka, M.; et al. Epigenetic profiles guide improved CRISPR/Cas9-mediated gene knockout in human T cells. Nucleic Acids Res. 2024, 52, 141–153. [Google Scholar] [CrossRef]
- Yi, K.; Kong, H.; Lao, Y.H.; Li, D.; Mintz, R.L.; Fang, T.; Chen, G.; Tao, Y.; Li, M.; Ding, J. Engineered Nanomaterials to Potentiate CRISPR/Cas9 Gene Editing for Cancer Therapy. Adv. Mater. 2024, 36, e2300665. [Google Scholar] [CrossRef]
- Guo, X.; Yu, Q.; Chen, D.; Wei, J.; Yang, P.; Yu, J.; Wang, X.; Kang, L. 4-Vinylanisole is an aggregation pheromone in locusts. Nature 2020, 584, 584–588. [Google Scholar] [CrossRef]
- Yang, M.; Du, B.; Xu, L.; Wang, H.; Wang, Y.; Lin, K.; He, G.; Kang, L. Glutamate-GABA imbalance mediated by miR-8-5p and its STTM regulates phase-related behavior of locusts. Proc. Natl. Acad. Sci. USA 2023, 120, e2215660120. [Google Scholar] [CrossRef]
- Tayler, T.D.; Pacheco, D.A.; Hergarden, A.C.; Murthy, M.; Anderson, D.J. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, 20697–20702. [Google Scholar] [CrossRef] [PubMed]
- Imura, E.; Shimada-Niwa, Y.; Nishimura, T.; Hückesfeld, S.; Schlegel, P.; Ohhara, Y.; Kondo, S.; Tanimoto, H.; Cardona, A.; Pankratz, M.J.; et al. The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in Drosophila melanogaster. Curr. Biol. 2020, 30, 2156.E5–2165.E5. [Google Scholar] [CrossRef]
- Tawfik, A.I.; Tanaka, S.; De Loof, A.; Schoofs, L.; Baggerman, G.; Waelkens, E.; Derua, R.; Milner, Y.; Yerushalmi, Y.; Pener, M.P. Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc. Natl. Acad. Sci. USA 1999, 96, 7083–7087. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Zhu, D.H.; Hoste, B.; Breuer, M. The dark-color inducing neuropeptide, [His7]-corazonin, causes a shift in morphometic characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J. Insect Physiol. 2002, 48, 1065–1074. [Google Scholar] [CrossRef]
- Hoste, B.; Simpson, S.J.; Tanaka, S.; De Loof, A.; Breuer, M. A comparison of phase-related shifts in behavior and morphometrics of an albino strain, deficient in [His7]-corazonin, and a normally colored Locusta migratoria strain. J. Insect Physiol. 2002, 48, 791–801. [Google Scholar] [CrossRef]
- Rogers, S.M.; Cullen, D.A.; Anstey, M.L.; Burrows, M.; Despland, E.; Dodgson, T.; Matheson, T.; Ott, S.R.; Stettin, K.; Sword, G.A.; et al. Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics. J. Insect Physiol. 2014, 65, 9–26. [Google Scholar] [CrossRef]
- Casey, C.; Yager, C.; Jankauski, M.; Heveran, C.M. The flying insect thoracic cuticle is heterogenous in structure and in thickness-dependent modulus gradation. Acta Biomater. 2022, 138, 422–429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Yan, Q.; Bi, Y.; Liu, G.; Hou, S.; Chen, X.; Zhao, X.; Zhang, X.; Zhang, M.; Zhang, J.; et al. CRISPR/Cas9-Mediated Knockout of the Corazonin Gene Indicates Its Regulation on the Cuticle Development of Desert Locusts (Schistocerca gregaria). Insects 2025, 16, 704. https://doi.org/10.3390/insects16070704
He Y, Yan Q, Bi Y, Liu G, Hou S, Chen X, Zhao X, Zhang X, Zhang M, Zhang J, et al. CRISPR/Cas9-Mediated Knockout of the Corazonin Gene Indicates Its Regulation on the Cuticle Development of Desert Locusts (Schistocerca gregaria). Insects. 2025; 16(7):704. https://doi.org/10.3390/insects16070704
Chicago/Turabian StyleHe, Yingying, Qiang Yan, Yong Bi, Guosheng Liu, Shuang Hou, Xinyi Chen, Xiaoming Zhao, Xueyao Zhang, Min Zhang, Jianzhen Zhang, and et al. 2025. "CRISPR/Cas9-Mediated Knockout of the Corazonin Gene Indicates Its Regulation on the Cuticle Development of Desert Locusts (Schistocerca gregaria)" Insects 16, no. 7: 704. https://doi.org/10.3390/insects16070704
APA StyleHe, Y., Yan, Q., Bi, Y., Liu, G., Hou, S., Chen, X., Zhao, X., Zhang, X., Zhang, M., Zhang, J., Ma, B., Warren, B., Roth, S., & Zhang, T. (2025). CRISPR/Cas9-Mediated Knockout of the Corazonin Gene Indicates Its Regulation on the Cuticle Development of Desert Locusts (Schistocerca gregaria). Insects, 16(7), 704. https://doi.org/10.3390/insects16070704