Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection and Rearing
2.2. Cloning of the LdMi Gene
2.3. Quantitative Real-Time PCR (qRT-PCR)
2.4. dsRNA Preparation
2.5. dsRNA Delivery and RNAi Bioassays
2.6. Morphological Analyses of the Wings
2.7. SEM Analysis of the Elytra and Hindwings
2.8. Spectroscopy Analysis
2.9. The Data Analysis
3. Results
3.1. Characterization of the LdMi Gene in L. decemlineata
3.2. The Expression of LdMi Across Developmental Stages and Tissues
3.3. The Effects of LdMi Knockdown on Adult Eclosion and Wing Morphology in L. decemlineata
3.4. Ultrastructural and Compositional Changes in the Elytra and Hindwings Following LdMi Knockdown
4. Discussion
4.1. Mi Is Conserved and Crucial for Wing Development
4.2. Mi Regulates Wing Surface Architecture and Cuticle Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lomakin, J.; Huber, P.A.; Eichler, C.; Arakane, Y.; Kramer, K.J.; Beeman, R.W.; Kanost, M.R.; Gehrke, S.H. Mechanical properties of the beetle elytron, a biological composite material. Biomacromolecules 2011, 12, 321–335. [Google Scholar] [CrossRef]
- Orlowski, G.; Mroz, L.; Kadej, M.; Smolis, A.; Tarnawski, D.; Karg, J.; Campanaro, A.; Bardiani, M.; Harvey, D.J.; Mendez, M.; et al. Breaking down insect stoichiometry into chitin-based and internal elemental traits: Patterns and correlates of continent-wide intraspecific variation in the largest European saproxylic beetle. Environ. Pollut. 2020, 262, 114064. [Google Scholar] [CrossRef] [PubMed]
- Kadoic Balasko, M.; Mikac, K.M.; Bazok, R.; Lemic, D. Modern Techniques in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control and Resistance Management: History Review and Future Perspectives. Insects 2020, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E. Colorado Potato Beetle Resistance to Insecticides. Am. J. Potato Res. 2008, 85, 395–413. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Huang, F.; Cheng, D.F.; Wang, J.J.; Zhang, Y.H.; Sun, J.R.; Guo, W.C. Effect of temperature on the occurrence and distribution of colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environ. Entomol. 2014, 43, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, C.; Zhang, M.; Zhou, H.; Zuo, Z.; Ding, X.; Zhang, R.; Li, F.; Gao, Y. Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Data 2023, 10, 36. [Google Scholar] [CrossRef]
- Alyokhin, A.; Mota-Sanchez, D.; Baker, M.; Snyder, W.E.; Menasha, S.; Whalon, M.; Dively, G.; Moarsi, W.F. The Red Queen in a potato field: Integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Manag. Sci. 2015, 71, 343–356. [Google Scholar] [CrossRef]
- Timani, K.; Bastarache, P.; Morin, P.J. Leveraging RNA Interference to Impact Insecticide Resistance in the Colorado Potato Beetle, Leptinotarsa decemlineata. Insects 2023, 14, 418. [Google Scholar] [CrossRef]
- Chen, Y.H.; Cohen, Z.P.; Bueno, E.M.; Christensen, B.M.; Schoville, S.D. Rapid evolution of insecticide resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Curr. Opin. Insect Sci. 2023, 55, 101000. [Google Scholar] [CrossRef]
- Scott, I.M.; Tolman, J.H.; MacArthur, D.C. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Manag. Sci. 2015, 71, 712–721. [Google Scholar] [CrossRef]
- Cingel, A.; Savic, J.; Lazarevic, J.; Cosic, T.; Raspor, M.; Smigocki, A.; Ninkovic, S. Extraordinary Adaptive Plasticity of Colorado Potato Beetle: "Ten-Striped Spearman" in the Era of Biotechnological Warfare. Int. J. Mol. Sci. 2016, 17, 1538. [Google Scholar] [CrossRef] [PubMed]
- Litscher, E.S.; Wassarman, P.M. Zona Pellucida Proteins, Fibrils, and Matrix. Annu. Rev. Biochem. 2020, 89, 695–715. [Google Scholar] [CrossRef]
- Fernandes, I.; Chanut-Delalande, H.; Ferrer, P.; Latapie, Y.; Waltzer, L.; Affolter, M.; Payre, F.; Plaza, S. Zona pellucida domain proteins remodel the apical compartment for localized cell shape changes. Dev. Cell 2010, 18, 64–76. [Google Scholar] [CrossRef]
- Jovine, L.; Qi, H.; Williams, Z.; Litscher, E.S.; Wassarman, P.M. A duplicated motif controls assembly of zona pellucida domain proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 5922–5927. [Google Scholar] [CrossRef]
- Jazwinska, A.; Affolter, M. A family of genes encoding zona pellucida (ZP) domain proteins is expressed in various epithelial tissues during Drosophila embryogenesis. Gene Expr. Patterns GEP 2004, 4, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.N.; Sobala, L.F.; Thom, D.; Nagaraj, R. dusky-like is required to maintain the integrity and planar cell polarity of hairs during the development of the Drosophila wing. Dev. Biol. 2013, 379, 76–91. [Google Scholar] [CrossRef]
- Bokel, C.; Prokop, A.; Brown, N.H. Papillote and Piopio: Drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. J. Cell Sci. 2005, 118, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Q.; Lin, M.; Shen, C.; Jin, L.; Li, G. Dusky-like Is Critical for Morphogenesis of the Cellular Protuberances and Formation of the Cuticle in Henosepilachna vigintioctopunctata. Biology 2023, 12, 866. [Google Scholar] [CrossRef]
- Zou, Y.L.; Ding, X.; Zhang, L.; Xu, L.F.; Liang, S.B.; Hu, H.; Dai, F.Y.; Tong, X.L. Bmmp influences wing morphology by regulating anterior-posterior and proximal-distal axes development. Insect Sci. 2022, 29, 1569–1582. [Google Scholar] [CrossRef]
- Li, C.; Li, B.; Ma, S.; Lu, P.; Chen, K. Dusky works upstream of Four-jointed and Forked in wing morphogenesis in Tribolium castaneum. Insect Mol. Biol. 2017, 26, 677–686. [Google Scholar] [CrossRef]
- Li, C.; Yang, L.; Wang, Y.; Du, H.; Zhang, J.; Lu, Y.; Li, B.; Chen, K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. Insect Sci. 2022, 29, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yun, X.; Li, B. Dusky-like is required for epidermal pigmentation and metamorphosis in Tribolium castaneum. Sci. Rep. 2016, 6, 20102. [Google Scholar] [CrossRef]
- Roch, F.; Alonso, C.R.; Akam, M. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation during wing morphogenesis. J. Cell Sci. 2003, 116, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Bilousov, O.O.; Katanaev, V.L.; Demydov, S.V.; Kozeretska, I.A. The downregulation of the Miniature gene does not replicate Miniature loss-of-function phenotypes in Drosophila melanogaster wing to the full extent. Cytol. Genet. 2013, 47, 124–127. [Google Scholar] [CrossRef]
- Bilousov, O.O.; Kozeretska, I.A.; Katanaev, V.L. Role of the gene Miniature in Drosophila wing maturation. Genesis 2012, 50, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, H.; Zhou, W.; Li, C.; Chen, Y.N.; Zhang, Q.; Fu, K.Y.; Guo, W.C.; Shi, J.F. Identification of chitinase genes and roles in the larval-pupal transition of Leptinotarsa decemlineata. Pest Manag. Sci. 2024, 80, 282–295. [Google Scholar] [CrossRef]
- Shi, J.F.; Mu, L.L.; Chen, X.; Guo, W.C.; Li, G.Q. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int. J. Biol. Sci. 2016, 12, 1319–1331. [Google Scholar] [CrossRef]
- Shi, J.F.; Cheng, M.H.; Zhou, W.; Zeng, M.Z.; Chen, Y.; Yang, J.X.; Wu, H.; Ye, Q.H.; Tang, H.; Zhang, Q.; et al. Crucial roles of specialized chitinases in elytral and hindwing cuticles construction in Leptinotarsa decemlineata. Pest Manag. Sci. 2024, 80, 4437–4449. [Google Scholar] [CrossRef]
- Kumar, A.; Congiu, L.; Lindstrom, L.; Piiroinen, S.; Vidotto, M.; Grapputo, A. Sequencing, De Novo assembly and annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata, Transcriptome. PLoS ONE 2014, 9, e86012. [Google Scholar] [CrossRef]
- Schoville, S.D.; Chen, Y.H.; Andersson, M.N.; Benoit, J.B.; Bhandari, A.; Bowsher, J.H.; Brevik, K.; Cappelle, K.; Chen, M.M.; Childers, A.K.; et al. A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci. Rep. 2018, 8, 1931. [Google Scholar] [CrossRef]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M.B.; et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Baran, T.; Erdogan, S.; Mentes, A.; Ozusaglam, M.A.; Cakmak, Y.S. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater. Sci. Eng. C 2014, 45, 72–81. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Quadro Oreste, E.; Leao Gouveia Costa, H.; Martin Lopez, H.; Dias Medeiros Saad, C.; Prentice, C. Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chem. 2021, 343, 128550. [Google Scholar] [CrossRef]
- Vargas, W.E.; Avendano, E.; Hernandez-Jimenez, M.; Azofeifa, D.E.; Libby, E.; Solis, A.; Barboza-Aguilar, C. Photonic Crystal Characterization of the Cuticles of Chrysina chrysargyrea and Chrysina optima Jewel Scarab Beetles. Biomimetics 2018, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Dimzon, I.K.; Knepper, T.P. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int. J. Biol. Macromol. 2015, 72, 939–945. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczynski, Z.; Bychowska, A.; Brzozowski, K.; Thoming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Dobzhansky, T. The influence of the quantity and quality of chromosomal material on the size of the cells in drosophila melanogaster. W. Roux’ Archiv f. Entwicklungsmechanik 1929, 115, 363–379. [Google Scholar] [CrossRef]
- Kozeretska, I.A.; Gubenko, I.S.; Gorb, S.N. New unusual miniature-like wing mutation in Drosophila virilis. J. Morphol. 2004, 261, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Newby, L.M.; White, L.; DiBartolomeis, S.M.; Walker, B.J.; Dowse, H.B.; Ringo, J.M.; Khuda, N.; Jackson, F.R. Mutational analysis of the Drosophila miniature-dusky (m-dy) locus: Effects on cell size and circadian rhythms. Genetics 1991, 128, 571–582. [Google Scholar] [CrossRef]
- Ren, N.; Zhu, C.; Lee, H.; Adler, P.N. Gene expression during Drosophila wing morphogenesis and differentiation. Genetics 2005, 171, 625–638. [Google Scholar] [CrossRef]
- Bilousov, O.O.; Katanaev, V.L.; Kozeretska, I.A. Miniature as a hypothetical regulatory protein of the Bursicon/Rickets signaling cascade in the wing epithelia of Drosophila melanogaster. Biopolym. Cell 2012, 28, 288–291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.-H.; Fu, K.-Y.; Zhou, W.; Shi, J.-F.; Guo, W.-C. Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata. Insects 2025, 16, 700. https://doi.org/10.3390/insects16070700
Cheng M-H, Fu K-Y, Zhou W, Shi J-F, Guo W-C. Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata. Insects. 2025; 16(7):700. https://doi.org/10.3390/insects16070700
Chicago/Turabian StyleCheng, Man-Hong, Kai-Yun Fu, Wei Zhou, Ji-Feng Shi, and Wen-Chao Guo. 2025. "Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata" Insects 16, no. 7: 700. https://doi.org/10.3390/insects16070700
APA StyleCheng, M.-H., Fu, K.-Y., Zhou, W., Shi, J.-F., & Guo, W.-C. (2025). Silencing Miniature Gene Disrupts Elytral and Hindwing Structures in Leptinotarsa decemlineata. Insects, 16(7), 700. https://doi.org/10.3390/insects16070700