Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Insects
2.2. Volatile Collection System
2.3. Gas Chromatography Coupled to Mass Spectrometry Analysis
2.4. 4-Arm Olfactometric Assays
2.5. Y-Tube Olfactometric Assays
2.6. Statistical Analysis
3. Results
3.1. Comparison of VOC Profiles Between Domesticated and Wild Murtilla Plants
3.2. Distribution and Variability of Volatile Compounds in Ugni molinae Plants
3.3. Olfactometric Preference Index for Ugni molinae Extracts in Lacewing Larvae and Aphid Adults
3.4. Olfactometric Responses of Aphids and Lacewings in a 4-Arm Olfactometer to Pure Compounds
3.5. Lacewing Adult Responses to Volatiles in a Y-Tube Olfactometer to Pure Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purugganan, M.D.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Conrady, M.; Lampei, C.; Bossdorf, O.; Hölzel, N.; Michalski, S.; Durka, W.; Bucharova, A. Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Proc. Natl. Acad. Sci. USA 2023, 120, e2219664120. [Google Scholar] [CrossRef]
- Buzdin, A.V.; Patrushev, M.V.; Sverdlov, E.D. Will plant genome editing play a decisive role in “quantum-leap” improvements in crop yield to feed an increasing global human population? Plants 2021, 10, 1667. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Denham, T. Coevolution in the Arable battlefield: Pathways to crop domestication, cultural practices, and parasitic domesticoids. In The Convergent Evolution of Agriculture in Humans and Insects; Schultz, T.R., Gawne, R., Peregrine, P.N., Eds.; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; Espinoza, J.; Lizama, M.; Quiroz, A. Herbivory Damage Increased VOCs in Wild Relatives of Murtilla Plants Compared to Their First Offspring. Metabolites 2023, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Cumplido, J.; Giusti, M.M.; Zhou, Y.; Kyryczenko-Roth, V.; Chen, Y.H.; Rodriguez-Saona, C. Testing the plant domestication-reduced defense hypothesis in blueberries: The role of herbivore identity. Arthropod-Plant Interact. 2018, 12, 483–493. [Google Scholar] [CrossRef]
- Abbas, F.; O’Neill Rothenberg, D.; Zhou, Y.; Ke, Y.; Wang, H.C. Volatile organic compounds as mediators of plant communication and adaptation to climate change. Physiol. Plant. 2022, 174, e13840. [Google Scholar] [CrossRef]
- Paudel, S.; Lin, P.A.; Foolad, M.R.; Ali, J.G.; Rajotte, E.G.; Felton, G.W. Induced plant defenses against herbivory in cultivated and wild tomato. J. Chem. Ecol. 2019, 45, 693–707. [Google Scholar] [CrossRef]
- Aslam, S.; Khan, S.H.; Ahmed, A.; Dandekar, A.M. The tale of cotton plant: From wild type to domestication, leading to its improvement by genetic transformation. Am. J. Mol. Biol. 2020, 10, 91–127. [Google Scholar] [CrossRef]
- Urbaneja-Bernat, P.; Cloonan, K.; Zhang, A.; Salazar-Mendoza, P.; Rodriguez-Saona, C. Fruit volatiles mediate differential attraction of Drosophila suzukii to wild and cultivated blueberries. J. Pest Sci. 2021, 94, 1249–1263. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Whitehead, S.; Turcotte, M.; Poveda, K. Domestication impacts on plant-herbivore interactions: A meta-analysis. Philos. Trans. R. Soc. B 2016, 372, 20160034. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Fuentes, M.A.; Lizama, M.G.; Parra, L.J.; Seguel, I.E.; Quiroz, A.E. Insect diversity, community composition and damage index on wild and cultivated murtilla. Cienc. Investig. Agrar. 2016, 43, 57–67. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Bardehle, L.; Lizama, M.; Seguel, I.; Quiroz, A. Restoration of flavonols and isoflavonoids in Ugni molinae subjected to a reciprocal transplant experiment in a domestication framework. Chem. Ecol. 2019, 35, 115–127. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; Rubilar, F.; Martínez-Cisterna, D.; Quiroz, A. Domestication of Plants of Ugni molinae Turcz (Myrtaceae) Interferes in the Biology of Chilesia rudis (Lepidoptera: Erebidae) Larvae. Molecules 2021, 26, 2063. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Bardehle, L.; Seguel, I.; Medina, C.; Quiroz, A. Volatiles induction in response to mechanical damage is reduced by domestication in murtilla. Bol. Latinoam. Caribe Plantas Med. Aromat. 2019, 18, 435–443. [Google Scholar] [CrossRef]
- Siani, A.C.; Nakamura, M.J.; das Neves, G.P.; Monteiro, S.D.S.; Ramos, M.F.S. Leaf essential oil from three exotic Myrtaceae species growing in the botanical garden of Rio de Janeiro, Brazil. Am. J. Plant Sci. 2016, 7, 834. [Google Scholar] [CrossRef]
- Cortiella, M.G.; Castro, R.I.; Parra-Palma, C.; Méndez-Yáñez, A.; Ramos, P.; Morales-Quintana, L. Analysis of the contents of Ugni molinae Turcz fruits across the ripening stages. Folia Hortic. 2024, 36, 1–16. [Google Scholar] [CrossRef]
- Scheuermann, E.; Seguel, I.; Montenegro, A.; Bustos, R.O.; Hormazabal, E.; Quiroz, A. Evolution of aroma compounds of murtilla fruits (Ugni molinae Turcz) during storage. J. Sci. Food Agric. 2008, 88, 485–492. [Google Scholar] [CrossRef]
- Seguel, I.; Peñaloza, E.; Gaete, N.; Montenegro, A.; Torres, A. Colecta y caracterización molecular de germoplasma de murta (Ugni molinae Turcz.) en Chile. Agro. Sur. 2000, 28, 32–41. [Google Scholar] [CrossRef]
- Seguel, B.; Espinoza, N.; Ha-Hen, K.S.; Montenegro, B.; San Martín, A.; Scheuermann, S.; Torralbo, B. Proceso de domesticación y desarrollo de la murtilla (Ugni molinae Turcz), un berry nativo de Chile. In Proceedings of the VII Simposio de Recursos Genéticos Para América Latina y El Caribe, Picon, Chile, 29–30 October 2009. [Google Scholar]
- Ali, J. The Chemical Ecology of a Model Aphid Pest, Myzus persicae, and Its Natural Enemies. Ph.D. Thesis, Keele University, Keele, UK, 2022. [Google Scholar]
- Herrera, R.A.; Ruano, F.; Ramírez, C.G.; Frischie, S.; Campos, M. Attraction of green lacewings (Neuroptera: Chrysopidae) to native plants used as ground cover in woody Mediterranean agroecosystems. Biol. Control 2019, 139, 104066. [Google Scholar] [CrossRef]
- de Lange, E.S.; Farnier, K.; Gaudillat, B.; Turlings, T.C. Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology 2016, 26, 33–44. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Poveda, K. Resource allocation trade-offs and the loss of chemical defences during apple domestication. Ann. Bot. 2019, 123, 1029–1041. [Google Scholar] [CrossRef]
- Kaplan, I. Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol. Control 2012, 60, 77–89. [Google Scholar] [CrossRef]
- Rugno, G.R.; Cuervo, J.G.B.; Garcia, A.G.; Qureshi, J.; Yamamoto, P.T. Abundance and diversity of lacewings in grower operated organic and conventional pest management programs for Diaphorina citri (Hemiptera: Liviidae). Crop Prot. 2021, 146, 105682. [Google Scholar] [CrossRef]
- Fernandez, A.R.; Sáez, A.; Quintero, C.; Gleiser, G.; Aizen, M.A. Intentional and unintentional selection during plant domestication: Herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. New Phytol. 2021, 231, 1586–1598. [Google Scholar] [CrossRef] [PubMed]
- Purugganan, M.D. What is domestication? Trends Ecol. Evol. 2022, 37, 663–671. [Google Scholar] [CrossRef]
- Harris, D.R. Domesticatory relationships of people, plants and animals. In Redefining Nature; Routledge: New York, NY, USA, 2021; pp. 437–463. [Google Scholar]
- Leach, H.M. Selection and the unforeseen consequences of domestication. In Where the Wild Things Are Now; Routledge: New York, NY, USA, 2020; pp. 71–99. [Google Scholar]
- Turcotte, M.M.; Turley, N.E.; Johnson, M.T. The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol. 2014, 204, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Borg, A.N.; Vuts, J.; Caulfield, J.C.; Withall, D.M.; Foulkes, M.J.; Birkett, M.A. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. Pest Manag. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Castro, R.I.; Ramos, P.; Parra-Palma, C.; Morales-Quintana, L. Ugni molinae fruit as a source of bioactive compounds with good quality traits. BioMed Res. Int. 2021, 2021, 6683877. [Google Scholar] [CrossRef]
- Espinoza-Tellez, T.; Bastías-Montes, J.; Quevedo-León, R.; Valencia-Aguilar, E.; Díaz-Carrasco, O.; Solano-Cornejo, M.Á.; Mesa-Mesina, F. The murta (Ugni molinae) and its beneficial health properties: A review. Sci. Agropecu. 2021, 12, 121–131. [Google Scholar] [CrossRef]
- Lutz, M.; Arancibia, M. Effects of Phytochemicals in Native Berries on the Reduction of Risk Factors of Age-Related Diseases. In Native Crops in Latin America; CRC Press: Boca Raton, FL, USA, 2022; pp. 337–369. [Google Scholar]
- Cortesero, A.M.; Stapel, J.O.; Lewis, W.J. Understanding and manipulating plant attributes to enhance biological control. Biol. Control 2000, 17, 35–49. [Google Scholar] [CrossRef]
- Chacón-Fuentes, M.; Parra, L.; Rodriguez-Saona, C.; Seguel, I.; Ceballos, R.; Quiroz, A. Domestication in murtilla (Ugni molinae) reduced defensive flavonol levels but increased resistance against a native herbivorous insect. Environ. Entomol. 2015, 44, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Fuentes, M.; Parra, L.; Lizama, M.; Seguel, I.; Urzúa, A.; Quiroz, A. Plant flavonoid content modified by domestication. Environ. Entomol. 2017, 46, 1080–1089. [Google Scholar] [CrossRef]
- Parra, L.; Mutis, A.; Ceballos, R.; Lizama, M.; Pardo, F.; Perich, F.; Quiroz, A. Volatiles released from Vaccinium corymbosum were attractive to Aegorhinus superciliosus (Coleoptera: Curculionidae) in an olfactometric bioassay. Environ. Entomol. 2009, 38, 781–789. [Google Scholar] [CrossRef]
- Ceballos, R.; Fernández, N.; Zúñiga, S.; Zapata, N. Electrophysiological and behavioral responses of pea weevil Bruchus pisorum L. (Coleoptera: Bruchidae) to volatiles collected from its host Pisum sativum L. Chilean J. Agric. Res. 2015, 75, 202–209. [Google Scholar] [CrossRef]
- Batume, C.; Mulongo, I.M.; Ludlow, R.; Ssebaale, J.; Randerson, P.; Pickett, J.A.; Scofield, S. Evaluating repellence properties of catnip essential oil against the mosquito species Aedes aegypti using a Y-tube olfactometer. Sci. Rep. 2024, 14, 2269. [Google Scholar] [CrossRef] [PubMed]
- Mandour, N.S.; Abdelhady, M.A.; Sarhan, A.A.; Osman, M.A.M. Attraction response of Tuta absoluta females to solanaceous host in Y-tube olfactometer. J. Appl. Plant Prot. 2020, 9, 59–66. [Google Scholar] [CrossRef]
- Riddick, E.W. Volatile and non-volatile organic compounds stimulate oviposition by aphidophagous predators. Insects 2020, 11, 683. [Google Scholar] [CrossRef]
- Thöming, G.; Knudsen, G.K. Semiochemicals and habitat manipulation to support green lacewing activity to reduce aphid infestations in agroecosystems. Basic Appl. Ecol. 2021, 51, 30–42. [Google Scholar] [CrossRef]
- Milla, R.; Osborne, C.P.; Turcotte, M.M.; Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 2015, 30, 463–469. [Google Scholar] [CrossRef]
- Koczor, S.; Szentkirályi, F.; Tóth, M. Responses of green lacewings to semiochemicals: Species and sex specificity (Neuroptera: Chrysopidae). Rev. Bras. Entomol. 2022, 66, e20220069. [Google Scholar] [CrossRef]
- Valle, D.; Mujica, V.; Gonzalez, A. Herbivore-dependent induced volatiles in pear plants cause differential attractive response by lacewing larvae. J. Chem. Ecol. 2023, 49, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Moreira, X.; Abdala-Roberts, L.; Gols, R.; Francisco, M. Plant domestication decreases both constitutive and induced chemical defenses by direct selection against defensive traits. Sci. Rep. 2018, 8, 12678. [Google Scholar] [CrossRef] [PubMed]
- Aljbory, Z.; Chen, M.S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2018, 25, 2–23. [Google Scholar] [CrossRef]
- Dedryver, C.A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. C. R. Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef]
- Niu, D.; Xu, L.; Lin, K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. Insects 2024, 15, 572. [Google Scholar] [CrossRef]
- Zhou, S.; Jander, G. Molecular ecology of plant volatiles in interactions with insect herbivores. J. Exp. Bot. 2022, 73, 449–462. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Tang, Y.; Zhang, P. Resilience of agricultural development in China’s major grain-producing areas under the double security goals of “grain ecology”. Environ. Sci. Pollut. Res. 2024, 31, 5881–5895. [Google Scholar] [CrossRef]
Domesticated Plants | Wild Ancestors |
---|---|
Ecotype 10-1 (D1 *) | Ecotypes 22-1 (W2) × 19-1 |
Ecotype 16-16 (D2) | Ecotypes 19-1 (W1) × 22-1 |
Ecotype 17-4 (D3) | Ecotypes 23-2 (W3) × 22-1 |
Ecotype 66-2 (D4) | Ecotypes 23-2 × 19-1 |
Compounds (µg/g/cm2/day) | W1 | W2 | W3 | D1 | D2 | D3 | D4 | |
---|---|---|---|---|---|---|---|---|
Alcohols and ketones | 2-Hexanone | 12.71 ± 0.68 b | 11.82 ± 0.95 b | 15.31 ± 0.41 a | 7.10 ± 0.31 c | 6.46 ± 0.62 c | 5.53 ± 0.10 d | 5.91 ± 0.72 d |
3-Hexanone | 6.12 ± 0.53 ab | 7.81 ± 1.25 a | 5.79 ± 0.32 b | 1.81 ± 0.21 d | 2.71 ± 0.11 c | 0.52 ± 0.11 e | 2.72 ± 1.81 c | |
3-Hexanol | 5.31 ± 0.71 b | 7.47 ± 0.42 a | 4.47 ± 0.21 c | 1.21 ± 0.47 e | 1.72 ± 0.31 d | 0.63 ± 0.01 f | 1.60 ± 0.71 d | |
2-Hexanol | 7.02 ± 0.61 b | 6.49 ± 0.73 c | 10.26 ± 1.01 a | 2.23 ± 0.34 b | 2.54 ± 0.02 e | 0.86 ± 0.02 f | 2.96 ± 0.63 d | |
2,4-Dimethyl acetophenone | 86.11 ± 2.56 a | 83.63 ± 2.41 a | 68.16 ± 5.12 b | 43.57 ± 8.47 d | 53.51 ± 8.47 c | 48.39 ± 4.45 cd | 32.15 ± 4.11 f | |
Monoterpenes | Pinene | 12.65± 1.22 b | 29.91 ± 6.62 a | 13.88 ± 3.36 b | 9.49 ± 0.42 d | 9.12 ± 1.13 d | 10.10 ± 0.97 c | 8.30 ± 0.80 e |
Sabinene | 12.49 ± 0.2 b | 15.10 ± 1.80 a | 10.65 ± 0.52 c | 2.41 ± 0.91 d | 0.11 ± 0.02 e | 0.22 ± 0.08 e | 0.12 ± 0.01 e | |
β-Myrcene | 6.18 ± 0.02 c | 18.70 ± 2.02 a | 15.21 ± 0.10 b | ND | 0.10 ± 0.01 c | 0.21 ± 0.06 c | 0.11 ± 0.01 c | |
1,8 Cineole | 7.62 ± 0.02 b | 19.31 ± 0.21 a | 7.51 ± 0.02 b | 0.10 ± 0.02 c | 0.21 ± 0.02 c | 0.21 ± 0.03 c | 0.11 ± 0.01 c | |
Limonene | 7.30 ± 0.3 b | 11.72 ± 1.90 a | 0.59 ± 0.11 c | 0.51 ± 0.02 c | 0.52 ± 0.01 c | 0.20 ± 0.01 d | 0.11 ± 0.01 d | |
Sesquiterpenes | Caryophyllene | 0.41 ± 0.0 b | 1.18 ± 1.21 a | 0.27 ± 0.02 c | ND | ND | 0.31 ± 0.08 c | 0.10 ± 0.01 d |
α-Caryophyllene | 0.29 ± 0.01 b | 1.54 ± 0.31 a | 0.13 ± 0.11 c | ND | ND | ND | 0.11 ± 0.01 c |
Compound Family | Compound | Degree of Freedom | Error | Total | F-Value | p-Value |
---|---|---|---|---|---|---|
Alcohols and ketones | 2-Hexanone | 6 | 56 | 62 | 23.86 | 0.0000 |
3-Hexanone | 6 | 56 | 62 | 4.06 | 0.0019 | |
3-Hexanol | 6 | 56 | 62 | 25.44 | 0.0000 | |
2-Hexanol | 6 | 56 | 62 | 5.35 | 0.0002 | |
2,4-Dimethyl acetophenone | 6 | 56 | 62 | 4.10 | 0.0018 | |
Monoterpenes | Pinene | 6 | 56 | 62 | 4.43 | 0.0010 |
Sabinene | 6 | 56 | 62 | 9.31 | 0.0000 | |
β-Myrcene | 6 | 56 | 62 | 5.08 | 0.0003 | |
1,8 Cineole | 6 | 56 | 62 | 2.98 | 0.0134 | |
Limonene | 6 | 56 | 62 | 3.01 | 0.0126 | |
Sesquiterpenes | Caryophyllene | 6 | 56 | 62 | 9.33 | 0.0000 |
α-Caryophyllene | 6 | 56 | 62 | 2.28 | 0.0489 |
Concentration (ppm) | 0.1 | 1 | 10 | 100 | |||||
---|---|---|---|---|---|---|---|---|---|
Response (%) | C | S | C | S | C | S | C | S | |
Compounds | |||||||||
Terpenes | |||||||||
1,8 cineole | 53.3 | 46.7 | 40.0 | 60.0 * | 60.0 * | 40.0 | 16.6 | 83.4 * | |
(S) limonene | 36.6 | 63.4 * | 60.0 * | 40.0 | 26.6 | 73.4 * | 20.0 | 80.0 * | |
(R) limonene | 70.0 * | 30.0 | 50.0 | 50.0 | 36.6 | 63.4 * | 43.3 | 56.7 | |
sabinene | 50.0 | 50.0 | 33.3 | 66.7 * | 43.3 | 56.7 | 43.3 | 56.7 | |
α-(−)-pinene | 13.3 | 86.7 * | 20.0 | 80.0 * | 10.0 | 90.0 * | 0.0 | 100.0 * | |
α-(+)-pinene | 23.3 | 76.7 * | 23.3 | 76.7 * | 20.0 | 80.0 * | 3.33 | 96.7 * | |
β-myrcene | 70.0 * | 30.0 | 60.0 * | 40.0 | 46.7 | 53.3 | 26.6 | 73.4 * | |
caryophyllene | 43.3 | 56.7 | 30.0 | 70.0 * | 36.6 | 63.4 * | 10.0 | 90.0 * | |
α-caryophyllene | 63.3 * | 36.7 | 53.3 | 46.7 | 33.3 | 66.7 * | 23.3 | 76.7 * | |
Alcohols, ketones, and esters | |||||||||
2-hexanol | 53.3 | 46.7 | 33.3 | 66.7 * | 23.3 | 76.7 * | 30.0 | 70.0 * | |
3-hexanone | 50.0 | 50.0 | 33.3 | 66.7 * | 20.0 | 80.0 * | 13.3 | 86.7 * | |
3-hexanol | 33.3 | 66.7 * | 33.3 | 66.7 * | 16.6 | 73.4 * | 20.0 | 80.0 * | |
2,4 dimethyl acetophenone | 26.6 | 73.4 * | 10.0 | 90.0 * | 10.0 | 90.0 * | 6.6 | 93.4 * | |
2-hexanone | 43.3 | 56.7 | 26.6 | 73.4 * | 16.6 | 83.4 * | 10.0 | 90.0 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón-Fuentes, M.; Bardehle, L.; Burgos-Díaz, C.; Lizama, M.; Martínez-Cisterna, D.; Opazo-Navarrete, M.; Bravo-Reyes, C.; Quiroz, A. Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae. Insects 2025, 16, 594. https://doi.org/10.3390/insects16060594
Chacón-Fuentes M, Bardehle L, Burgos-Díaz C, Lizama M, Martínez-Cisterna D, Opazo-Navarrete M, Bravo-Reyes C, Quiroz A. Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae. Insects. 2025; 16(6):594. https://doi.org/10.3390/insects16060594
Chicago/Turabian StyleChacón-Fuentes, Manuel, Leonardo Bardehle, César Burgos-Díaz, Marcelo Lizama, Daniel Martínez-Cisterna, Mauricio Opazo-Navarrete, Cristina Bravo-Reyes, and Andrés Quiroz. 2025. "Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae" Insects 16, no. 6: 594. https://doi.org/10.3390/insects16060594
APA StyleChacón-Fuentes, M., Bardehle, L., Burgos-Díaz, C., Lizama, M., Martínez-Cisterna, D., Opazo-Navarrete, M., Bravo-Reyes, C., & Quiroz, A. (2025). Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae. Insects, 16(6), 594. https://doi.org/10.3390/insects16060594