Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Insect Rearing
2.3. Chemical Analysis of EOs
2.4. Bioassays
2.4.1. Fumigant Toxicity Assay
2.4.2. Contact Toxicity Assay
2.4.3. Repellency Assay
2.5. Data Analysis
3. Results
3.1. Chemical Composition of EOs
3.2. Fumigant Toxicity
3.3. Contact Toxicity
3.4. Repellency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EOs | Essential oils |
EO | Essential oil |
CI | Confidence intervals |
LC | Lethal concentration |
LD | Lethal dose |
MH | Monoterpene hydrocarbon |
MO | Monoterpene oxygenated |
SH | Sesquiterpene hydrocarbon |
SO | Sesquiterpene oxygenated |
References
- Bautista, C.R. Entomología Veterinaria Esencial; Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias: Coyoacán, México, 2016; pp. 100–103. [Google Scholar]
- Robinson, W.H. Urban Entomology; Garland Science: Blacksburg, VA, USA, 2020; pp. 298–300. [Google Scholar]
- Abbas, M.N.; Sajeel, M.; Kausar, S. House Fly (Musca domestica), a Challenging Pest; Biology. Management and Control Strategies. Elixir Entomol. 2013, 64, 19333–19338. [Google Scholar]
- Adenusi, A.A.; Adewoga, T.O.S. Studies on the Potential and Public Health Importance of Non-Biting Synanthropic Flies in the Mechanical Transmission of Human Enterohelminths. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.C.; Ross, D.H.; Scott, J.G. Insecticide Resistance Monitoring of House Fly Populations from the United States. Pestic. Biochem. Physiol. 2019, 158, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database. 2025. Available online: https://www.pesticideresistance.org/display.php?page=species&arId=151 (accessed on 28 February 2025).
- Egbuna, C.; Sawicka, B.; Tijjani, H.; Kryeziu, T.L.; Ifemeje, J.C.; Skiba, D.; Lukong, C.B. Chapter 4—Biopesticides, Safety Issues and Market Trends. In Natural Remedies for Pest, Disease and Weed Control; Academic Press: Cambridge, MA, USA, 2020; pp. 43–53. [Google Scholar]
- Pavela, R. Essential Oils for the Development of Eco-Friendly Mosquito Larvicides: A Review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry. In Bioactive Essential Oils and Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar]
- Pavela, R. History, Presence and Perspective of Using Plant Extracts as Commercial Botanical Insecticides and Farm Products for Protection against Insects—A Review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Gahukar, R.T. Evaluation of plant-derived products against pests and diseases of medicinal plants: A review. Crop Prot. 2012, 42, 202–209. [Google Scholar] [CrossRef]
- Mossa, A.T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef]
- Abdel-Baki, A.-A.S.; Aboelhadid, S.M.; Sokmen, A.; Al-Quraishy, S.; Hassan, A.O.; Kamel, A.A. Larvicidal and Pupicidal Activities of Essential Oil, Trans-Anethole and Fenchone against House Fly and Their Inhibitory Effect on Acetylcholinesterase. Entomol. Res. 2021, 51, 568–577. [Google Scholar] [CrossRef]
- Khater, H.F.; Geden, C.J. Efficacy and Repellency of Some Essential Oils and Their Blends against Larval and Adult House Flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 2019, 44, 256–263. [Google Scholar] [CrossRef]
- Villanueva-Pereira, T.; Silva-Aguayo, G.; Rodríguez, M.; Rodríguez-Maciel, J.C.; Cabrera-Barjas, G.; Romero, Á.; Oyarce, G. Insecticidal and Repellent Activity of Essential Oils of Cinnamon, Lemon, and Peppermint against House fly. Chil. J. Agric. Res. 2025, 85, 318–329. [Google Scholar] [CrossRef]
- Acevedo, G.R.; Zapater, M.; Toloza, A.C. Insecticide Resistance of House Fly, Musca domestica (L.) from Argentina. Parasitol. Res. 2009, 105, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Tangpao, T.; Krutmuang, P.; Kumpoun, W.; Jantrawut, P.; Pusadee, T.; Cheewangkoon, R.; Sommano, S.R.; Chuttong, B. Encapsulation of Basil Essential Oil by Paste Method and Combined Application with Mechanical Trap for Oriental Fruit Fly Control. Insects 2021, 12, 633. [Google Scholar] [CrossRef]
- Morey, R.A.; Khandagle, A.J. Bioefficacy of Essential Oils of Medicinal Plants against House fly, Musca domestica L. Parasitol. Res. 2012, 111, 1799–1805. [Google Scholar] [CrossRef]
- SAS Institute. Language Guide for Personal Computer Release, 6th ed.; SAS Institute: Cary, NC, USA, 1998. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Hlina, B.L.; Birceanu, O.; Robinson, C.S.; Dhiyebi, H.; Wilkie, M.P. The Relationship between Thermal Physiology and Lampricide Sensitivity in Larval Sea Lamprey (Petromyzon marinus). J. Great Lakes Res. 2021, 47, S272–S284. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal Activity and Mode of Action of Monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Palacios, S.M. Insecticidal Toxicity of Eucalyptus Cinerea Essential Oil and 1,8-Cineole against Musca domestica and Possible Uses According to the Metabolic Response of Flies. Ind. Crop. Prod. 2015, 63, 133–137. [Google Scholar] [CrossRef]
- Gharib, A.M.; El-Shewy, A.M.; Hamouda, S.S.A.; Gad, H.A.; Abdelgaleil, S.A.M. Insecticidal, Biochemical and Histological Effects of Monoterpenes against Musca domestica (Diptera: Muscidae). J. Asia Pac. Entomol. 2024, 27, 102256. [Google Scholar] [CrossRef]
- Debnath, S.; Kumar, H.; Sharma, A. Foeniculum vulgare from Spice to Pharma: Recent Advances in Its Medicinal Value, Bioactivities and Perspectives. Trad. Integr. Med. 2023, 8, 217–229. [Google Scholar] [CrossRef]
- Soonwera, M.; Moungthipmalai, T.; Puwanard, C.; Sittichok, S.; Sinthusiri, J.; Passara, H. Adulticidal Synergy of Two Plant Essential Oils and Their Major Constituents against the House fly Musca domestica and Bioassay on Non-Target Species. Heliyon 2024, 10, e26910. [Google Scholar] [CrossRef] [PubMed]
- Bedini, S.; Guarino, S.; Echeverria, M.C.; Flamini, G.; Ascrizzi, R.; Loni, A.; Conti, B. Allium sativum, Rosmarinus officinalis, and Salvia officinalis Essential Oils: A Spiced Shield against Blowflies. Insects 2020, 11, 143. [Google Scholar] [CrossRef]
- Damyanova, S.; Mollova, S.; Stoyanova, A.; Gubenia, O. Chemical Composition of Salvia officinalis L. essential oil from Bulgaria. Ukr. Food J. 2016, 5, 695–700. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical Composition and Biological Activities of Salvia Officinalis Essential Oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [CrossRef]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis Essential Oil: Chemical Analysis and Evaluation of Anti-Enzymatic and Antioxidant Bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Jaffar, S.; Lu, Y. Toxicity of Some Essential Oils Constituents against Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Insects 2022, 13, 954. [Google Scholar] [CrossRef]
- Tian, Y.; Hogsette, J.A.; Norris, E.J.; Hu, X.P. Topical Toxicity and Repellency Profiles of 17 Essential Oil Components against Insecticide-Resistant and Susceptible Strains of Adult Musca domestica (Diptera: Muscidae). Insects 2024, 15, 384. [Google Scholar] [CrossRef]
- Emilie, D.; Mallent, M.; Menut, C.; Chandre, F.; Martin, T. Behavioral Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 Plant Extracts. J. Econ. Entomol. 2015, 108, 1890–1901. [Google Scholar] [CrossRef]
- Norris, E.J.; Gross, A.D.; Bartholomay, L.C.; Coats, J.R. Plant Essential Oils Synergize Various Pyrethroid Insecticides and Antagonize Malathion In Aedes aegypti. Med. Vet. Entomol. 2019, 33, 453–466. [Google Scholar] [CrossRef]
- Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A.; et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Faraone, N.; Hillier, N.K.; Cutler, G.C. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae). PLoS ONE 2015, 10, e0127774. [Google Scholar] [CrossRef] [PubMed]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of Plant Essential Oil Based Terpene Compounds as Larvicidal and Adulticidal Agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, A.; Ullah, M.I.; Afzal, M.; Ali, S.; Sajjad, A.; Ahmad, A.; Khalid, S. Management of Tribolium castaneum Using Synergism between Conventional Fumigant and Plant Essential Oils. Int. J. Trop. Insect Sci. 2020, 40, 781–788. [Google Scholar] [CrossRef]
- Kolani, L.; Sanda, K.; Agboka, K.; Mawussi, G.; Koba, K.; Djouaka, R. Investigation of Insecticidal Activity of Blend of Essential Oil of Cymbopogon schoenanthus and Neem Oil on Plutella xylostella (Lepidoptera: Plutellidae). J. Essent. Oil Bear. Plant. 2016, 19, 1478–1486. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial Development of Plant Essential Oils and Their Constituents as Active Ingredients in Bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- de Groot, A.C.; Schmidt, E. Tea tree oil: Contact allergy and chemical composition. Contact Dermat. 2016, 75, 129–143. [Google Scholar] [CrossRef]
- Lee, M.Y. Essential oils as repellents against arthropods. BioMed Res. Int. 2018, 2018, 6860271. [Google Scholar] [CrossRef]
- Santos, C.D.; Cabot, J.C. Persistent effects after camphor ingestion: A case report and literature review. J. Emerg. Med. 2015, 48, 298–304. [Google Scholar] [CrossRef]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef]
- Jijakli, H.; Maso, S.D.; Parisi, O. Bio-Herbicide Based on Essential Oil. Patent Application No. 16/973,986, 14 June 2019. [Google Scholar]
- Maes, C.; Meersmans, J.; Lins, L.; Bouquillon, S.; Fauconnier, M.L. Essential oil-based bioherbicides: Human health risks analysis. Int. J. Mol. Sci. 2021, 22, 9396. [Google Scholar] [CrossRef]
Compounds | RT (min) 1 | Eucalyptus globulus (%) | Foeniculum vulgare (%) | Salvia officinalis (%) |
---|---|---|---|---|
α-Pinene | 5.702 | 14 | 4.644 | 4.03 |
Camphene | 5.976 | - | 0.366 | 2.39 |
β-Phellandrene | 6.455 | - | 0.108 | - |
β-Pinene | 6.517 | 0.312 | 0.257 | 0.437 |
β-Myrcene | 6.79 | 0.364 | 0.556 | 0.424 |
α-phellandrene | 7.056 | - | 1.759 | - |
o-Cymene | 7.449 | - | 0.143 | 0.277 |
D-limonene | 7.541 | 1.897 | 0.916 | |
1,8-Cineole | 7.579 | 76.475 | - | 2.16 |
Γ-terpinene | 8.127 | 0.272 | 0.438 | 0.27 |
L-Fenchone | 8.75 | - | 29.489 | - |
α-Thujone | 9.125 | - | - | 54.32 |
Chrysanthone | 9.27 | - | - | 5.33 |
Camphor | 9.821 | - | 0.466 | 18.8 |
Borneol | 10.189 | - | - | 1.052 |
Terpinen-4-ol | 10.403 | - | - | 0.275 |
Estragole | 10.766 | - | 2.14 | - |
Bornyl acetate | 12.331 | - | - | 0.565 |
Trans-anethole | 12.434 | - | 57.278 | - |
Camphene | 13.405 | 3.07 | - | - |
α-Gurjunene | 14.45 | 2.589 | - | - |
Caryophyllene | 14.613 | - | - | 1.583 |
Humulene | 15.151 | - | - | 1.352 |
Aromadendrene | 15.264 | 1.389 | - | - |
(+)-Ledene | 15.79 | - | - | 0.51 |
Epiglobulol | 16.769 | 0.204 | - | - |
Globulol | 17.137 | 0.966 | - | - |
Viridiflorol | 17.251 | 0.358 | - | 4.21 |
Epimanool | 24.027 | - | - | 0.588 |
Monoterpene hydrocarbons | 18.018 (5) | 10.168 (9) | 8.744 (7) | |
Oxygenated monoterpenes | 76.475 (1) | 89.373 (4) | 82.502 (7) | |
Sesquiterpene hydrocarbons | 3.978 (2) | - | 3.445 (3) | |
Oxygenated sesquiterpenes | 1.528 (3) | - | 4.21 (1) | |
Other compounds | - | - | 0.588 (1) | |
Total identified (%) | 99.999 | 99.541 | 93.489 |
Essential Oil | LC50 (LC 95%) * (µL L−1 air) | LC90 (LC 95%) * (µL L−1 air) | Equation | Chi-Square | PGOF ** |
---|---|---|---|---|---|
Eucalyptus (Eucaliptus globulus) | 18.1 a [17.3–19.0] | 25.8 a [24.4–27.6] | Y = 0.168x − 3.05 | 6.47 | 0.167 |
Fennel (Foeniculum vulgare) | 26.6 b [22.3–31.9] | 41.2 b [34.9–56.8] | Y = 0.088x − 2.34 | 13.8 | 0.008 |
Sage (Salvia officinalis) | 28.2 b [20.8–39.9] | 47.7 b [37.2–85.4] | Y = 0.0658x − 1.85 | 9.25 | 0.02 |
Essential Oil | LC50 (LC 95%) * (µL mL−1) | LC90 (LC 95%) * (µL mL−1) | Equation | Chi-Square | PGOF ** |
---|---|---|---|---|---|
Eucalyptus (Eucaliptus globulus) | 111 ab [91.1–131] | 180 b [155–229] | Y = 0.0184x − 2.03 | 10.5 | 0.033 |
Fennel (Foeniculum vulgare) | 86.7 a [81.2–92.5] | 130 a [121–142] | Y = 0.0297x − 2.57 | 3.51 | 0.476 |
Sage (Salvia officinalis) | 117 b [108–127] | 203 b [188–222] | Y = 0.0150X − 1.76 | 4.15 | 0.386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyarce, G.A.; Loyola, P.; Iubini-Aravena, M.; Romero, Á.; Rodríguez-Maciel, J.C.; Becerra, J.; Silva-Aguayo, G. Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L. Insects 2025, 16, 542. https://doi.org/10.3390/insects16050542
Oyarce GA, Loyola P, Iubini-Aravena M, Romero Á, Rodríguez-Maciel JC, Becerra J, Silva-Aguayo G. Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L. Insects. 2025; 16(5):542. https://doi.org/10.3390/insects16050542
Chicago/Turabian StyleOyarce, Gabriela Antonieta, Patricia Loyola, Michelle Iubini-Aravena, Álvaro Romero, J. Concepción Rodríguez-Maciel, José Becerra, and Gonzalo Silva-Aguayo. 2025. "Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L." Insects 16, no. 5: 542. https://doi.org/10.3390/insects16050542
APA StyleOyarce, G. A., Loyola, P., Iubini-Aravena, M., Romero, Á., Rodríguez-Maciel, J. C., Becerra, J., & Silva-Aguayo, G. (2025). Adulticidal and Repellent Activity of Essential Oils from Three Cultivated Aromatic Plants Against Musca domestica L. Insects, 16(5), 542. https://doi.org/10.3390/insects16050542