An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Yeast Engineering and Culturing
2.3. RNAi Sugar Feeding Assays
2.4. Confirmation of Rbfox1 Silencing
2.5. Evaluation of Yeast Toxicity to Non-Target Insects
2.6. Immunohistochemistry Studies
3. Results and Discussion
3.1. SWD-Specific Insecticidal Activity of Rbfox.687 Yeast
3.2. Silencing of Rbfox1 Results in Loss of Neural Activity in the Brain and Behavioral Phenotypes in Adult Flies
3.3. An ATSB Station for Delivery of Insecticidal RNAi Yeast
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATSB | Attractive targeted sugar bait |
IPM | Integrated pest management |
RNAi | RNA interference |
Rbfox1 | RNA Binding Fox-1 Homolog |
SD | Standard deviation |
SEM | Standard error of the mean |
shRNA | Short hairpin RNA |
SWD | Spotted-wing drosophila |
YES | Yeast endless soda |
References
- Reyes, J.A.; Lira-Noriega, A. Current and future global potential distribution of the fruit fly Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 2020, 152, 587–599. [Google Scholar] [CrossRef]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2011, 2, G1–G7. [Google Scholar] [CrossRef]
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.-S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Cai, P.; Song, Y.; Yi, C.; Zhang, Q.; Xia, H.; Lin, J.; Zhang, H.; Yang, J.; Ji, Q.; Chen, J. Potential host fruits for Drosophila suzukii: Olfactory and oviposition preferences and suitability for development. Entomol. Exp. Appl. 2019, 167, 880–890. [Google Scholar] [CrossRef]
- Sarkar, N.; Rhodes, E.M.; Spies, J.; Roubos, C.R.; Little, B.A.; Sial, A.A.; Fanning, P.D.; Isaacs, R.; Liburd, O.E. Evaluation of non-target effects of OMRI-listed insecticides for management of Drosophila suzukii Matsumura in berry crops. J. Appl. Entomol. 2020, 144, 12–25. [Google Scholar] [CrossRef]
- Diepenbrock, L.M.; Rosensteel, D.O.; Hardin, J.A.; Sial, A.A.; Burrack, H.J. Season-long programs for control of Drosophila suzukii in southeastern US blueberries. Crop Prot. 2016, 81, 76–84. [Google Scholar] [CrossRef]
- Fanning, P.; Grieshop, M.; Isaacs, R. Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. J. Appl. Entomol. 2017, 142, 26–32. [Google Scholar] [CrossRef]
- Ganjisaffar, F.; Demkovich, M.R.; Chiu, J.C.; Zalom, F.G. Characterization of field-derived Drosophila suzukii (Diptera: Drosophilidae) Resistance to Pyrethroids in California Berry Production. J. Econ. Entomol. 2022, 115, 1676–1684. [Google Scholar] [CrossRef]
- Rijal, J. Tackling Pesticide resistance of spotted wing drosophila in cherries. Progress. Crop Consult. 2023, 25, 2023. [Google Scholar]
- Disi, J.O.; Sial, A.A. Laboratory selection and assessment of resistance risk in Drosophila suzukii (Diptera: Drosophilidae) to Spinosad and Malathion. Insects 2021, 12, 794. [Google Scholar] [CrossRef]
- Airs, P.M.; Bartholomay, L.C. RNA Interference for mosquito and mosquito-borne disease control. Insects 2017, 8, 4. [Google Scholar] [CrossRef]
- Mysore, K.; Hapairai, L.K.; Sun, L.; Li, P.; Wang, C.W.; Scheel, N.D.; Lesnik, A.; Igiede, J.; Scheel, M.P.; Wei, N.; et al. Characterization of a dual-action adulticidal and larvicidal interfering RNA pesticide targeting the Shaker gene of multiple disease vector mosquitoes. PLoS Negl. Trop. Dis. 2020, 14, e0008479. [Google Scholar] [CrossRef] [PubMed]
- Mysore, K.; Sun, L.; Hapairai, L.K.; Wang, C.W.; Roethele, J.B.; Igiede, J.; Scheel, M.P.; Scheel, N.D.; Li, P.; Wei, N.; et al. A broad-based mosquito yeast interfering RNA pesticide targeting Rbfox1 represses Notch signaling and kills both larvae and adult mosquitoes. Pathogens 2021, 10, 1251. [Google Scholar] [CrossRef]
- Conboy, J.G. Developmental regulation of RNA processing by Rbfox proteins. Wiley Interdiscip. Rev. RNA 2017, 8, e1398. [Google Scholar] [CrossRef]
- Gazzara, M.R.; Mallory, M.J.; Roytenberg, R.; Lindberg, J.P.; Jha, A.; Lynch, K.W.; Barash, Y. Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes. Genome Res. 2017, 27, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, M.M.; Shcherbata, H.R. Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. Nat. Commun. 2018, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Hapairai, L.K.; Mysore, K.; Chen, Y.; Harper, E.I.; Scheel, M.P.; Lesnik, A.M.; Sun, L.; Severson, D.W.; Wei, N.; Duman-Scheel, M. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti. Sci. Rep. 2017, 7, 13223. [Google Scholar] [CrossRef]
- Njoroge, T.M.; Hamid-Adiamoh, M.; Duman-Scheel, M. Maximizing the potential of attractive targeted sugar baits (ATSBs) for integrated vector management. Insects 2023, 14, 585. [Google Scholar] [CrossRef]
- Eisele, T.P.; Kleinschmidt, I.; Sarrassat, S.; TerKuile, F.; Miller, J.; Chanda, J.; Silumbe, K.; Samuels, A.; Janssen, J.; Ogwang, C.; et al. Attractive targeted sugar bait phase III trials in Kenya, Mali, and Zambia. Trials 2022, 23, 640. [Google Scholar] [CrossRef]
- Ashton, R.A.; Saili, K.; Chishya, C.; Banda Yikona, H.; Arnzen, A.; Orange, E.; Chitoshi, C.; Chulu, J.; Tobolo, T.; Ndalama, F.; et al. Efficacy of attractive targeted sugar bait stations against malaria in Western Province Zambia: Epidemiological findings from a two-arm cluster randomized phase III trial. Malar. J. 2024, 23, 343. [Google Scholar] [CrossRef]
- Traore, M.M.; Junnila, A.; Traore, S.F.; Doumbia, S.; Revay, E.E.; Kravchenko, V.D.; Schlein, Y.; Arheart, K.L.; Gergely, P.; Xue, R.D.; et al. Large-scale field trial of attractive toxic sugar baits (ATSB) for the control of malaria vector mosquitoes in Mali, West Africa. Malar. J. 2020, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Traore, M.M.; Junnila, A.; Traore, S.F.; Doumbia, S.; Revay, E.E.; Schlein, Y.; Yakovlev, R.V.; Saldaitis, A.; Cui, L.; Petrányi, G.; et al. The efficacy of attractive targeted sugar baits in reducing malaria vector abundance in low-endemicity settings of northwest Mali. Malar. J. 2024, 23, 319. [Google Scholar] [CrossRef]
- Fiorenzano, J.M.; Koehler, P.G.; Xue, R.D. Attractive toxic sugar bait (ATSB) for control of mosquitoes and its impact on non-target organisms: A review. Int. J. Environ. Res. Public Health 2017, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.T.M.; Mysore, K.; Njoroge, T.M.; Winter, N.; Feng, R.S.; Singh, S.; James, L.D.; Singkhaimuk, P.; Sun, L.; Mohammed, A.; et al. Demonstration of RNAi yeast insecticide activity in semi-field larvicide and attractive targeted sugar bait trials conducted on Aedes and Culex mosquitoes. Insects 2023, 14, 950. [Google Scholar] [CrossRef]
- Hamby, K.A.; Becher, P.G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 2016, 89, 621–630. [Google Scholar] [CrossRef]
- Becher, P.G.; Hagman, A.; Verschut, V.; Chakraborty, A.; Rozpędowska, E.; Lebreton, S.; Bengtsson, M.; Flick, G.; Witzgall, P.; Piškur, J. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol. Evol. 2018, 8, 2962–2974. [Google Scholar] [CrossRef]
- Cowles, R.S.; Rodriguez-Saona, C.; Holdcraft, R.; Loeb, G.M.; Elsensohn, J.E.; Hesler, S.P. Sucrose improves insecticide activity against Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 2015, 108, 640–653. [Google Scholar] [CrossRef]
- van Dijken, J.P.; Bauer, J.; Brambilla, L.; Duboc, P.; Francois, J.M.; Gancedo, C.; Giuseppin, M.L.; Heijnen, J.J.; Hoare, M.; Lange, H.C.; et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym. Microb. Technol. 2000, 26, 706–714. [Google Scholar] [CrossRef]
- Mumberg, D.; Müller, R.; Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156, 119–122. [Google Scholar] [CrossRef]
- Mysore, K.; Hapairai, L.K.; Wei, N.; Realey, J.S.; Scheel, N.D.; Severson, D.W.; Duman-Scheel, M. Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods Mol. Biol. 2019, 1858, 213–231. [Google Scholar] [CrossRef]
- Mysore, K.; Graham, J.; Njoroge, T.M.; Stewart, A.T.M.; Nelaturi, S.; Duman-Scheel. Development of an eco-friendly RNAi yeast attractive targeted sugar bait that silences the Shaker gene in spotted-wing drosophila, Drosophila suzukii. bioRxiv 2025. [Google Scholar] [CrossRef]
- Zhai, Y.; Lin, Q.; Zhou, X.; Zhang, X.; Liu, T.; Yu, Y. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE 2014, 9, e106800. [Google Scholar] [CrossRef]
- Clemons, A.; Flannery, E.; Kast, K.; Severson, D.; Duman-Scheel, M. Immunohistochemical analysis of protein expression during Aedes aegypti development. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5510. [Google Scholar] [CrossRef] [PubMed]
- Mysore, K.; Flister, S.; Muller, P.; Rodrigues, V.; Reichert, H. Brain development in the yellow fever mosquito Aedes aegypti: A comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster. Dev. Genes. Evol. 2011, 221, 281–296. [Google Scholar] [CrossRef]
- Wagh, D.A.; Rasse, T.M.; Asan, E.; Hofbauer, A.; Schwenkert, I.; Durrbeck, H.; Buchner, S.; Dabauvalle, M.C.; Schmidt, M.; Qin, G.; et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 2006, 49, 833–844. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2019, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Ahn, S.J.; Flinn, C.M.; Choi, M.Y. Identification and functional analysis of dsRNases in spotted-wing drosophila, Drosophila suzukii. Arch. Insect Biochem. Physiol. 2021, 107, e21822. [Google Scholar] [CrossRef]
- Murphy, K.A.; Tabuloc, C.A.; Cervantes, K.R.; Chiu, J.C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 2016, 6, 22587. [Google Scholar] [CrossRef]
- Fryzlewicz, L.; VanWinkle, A.; Lahondere, C. Development of an attractive toxic sugar bait for the control of Aedes j. japonicus (Diptera: Culicidae). J. Med. Entomol. 2022, 59, 308–313. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef]
- Panel, A.D.C.; Zeeman, L.; van der Sluis, B.J.; van Elk, P.; Pannebakker, B.A.; Wertheim, B.; Helsen, H.H.M. Overwintered Drosophila suzukii are the main source for infestations of the first fruit crops of the season. Insects 2018, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Quevedo, K.; Lankheet, M.J.; Pen, I.; Trienens, M.; Helsen, H.H.M.; Wertheim, B. Studying foraging behavior to improve bait sprays application to control Drosophila suzukii. BMC Ecol. Evol. 2024, 24, 60. [Google Scholar] [CrossRef] [PubMed]
- Bohari, R.; Jin Hin, C.; Matusop, A.; Abdullah, M.R.; Ney, T.G.; Benjamin, S.; Lim, L.H. Wide area spray of bacterial larvicide, Bacillus thuringiensis israelensis strain AM65-52, integrated in the national vector control program impacts dengue transmission in an urban township in Sibu district, Sarawak, Malaysia. PLoS ONE 2020, 15, e0230910. [Google Scholar] [CrossRef]
- Brizzee, C.; Mysore, K.; Njoroge, T.M.; McConnell, S.; Hamid-Adiamoh, M.; Stewart, A.T.M.; Kinder, J.T.; Crawford, J.; Duman-Scheel, M. Targeting mosquitoes through generation of an insecticidal RNAi yeast strain using Cas-CLOVER and super piggyBac engineering in Saccharomyces cerevisiae. J. Fungi 2023, 9, 1056. [Google Scholar] [CrossRef]
- Kyomuhangi, I.; Yukich, J.; Saili, K.; Orange, E.; Masuzyo, M.H.; Mwenya, M.; Mambo, P.; Hamainza, B.; Wagman, J.; Miller, J.; et al. Evaluating trends in damage to attractive targeted sugar baits (ATSBs) deployed during the second year of a two-year Phase III trial in Western Zambia. Malar. J. 2024, 23, 263. [Google Scholar] [CrossRef] [PubMed]
- Orange, E.; Arnzen, A.; Muluma, C.; Akalalambili, S.; Tobolo, T.; Ndalama, F.; Chishya, C.; Saili, K.; Ashton, R.A.; Eisele, T.P.; et al. Community acceptance of a novel malaria intervention, Attractive Targeted Sugar Baits, in the Zambia phase III trial. Malar. J. 2024, 23, 240. [Google Scholar] [CrossRef]
- Yalla, N.; Polo, B.; McDermott, D.P.; Kosgei, J.; Omondi, S.; Agumba, S. A comparison of the attractiveness of flowering plant blossoms versus attractive targeted sugar baits (ATSBs) in western Kenya. PLoS ONE 2023, 18, e0286679. [Google Scholar] [CrossRef]
- Chanda, J.; Wagman, J.; Chanda, C.; Kaniki, T.; Ng’andu, M.; Muyabe, R.; Mwenya, M.; Sakala, J.; Miller, J.; Mwaanga, G.; et al. Feeding rates of malaria vectors from a prototype attractive sugar bait station in Western Province, Zambia: Results of an entomological validation study. Malar. J. 2024, 22, 70. [Google Scholar] [CrossRef]
Test Organism | % Survival ± SD | ||
---|---|---|---|
n/Treatment | Control Yeast | Rbfox.687 | |
P. barbatus | 50 | 95 ± 3 | 95 ± 5 |
A. aegypti | 50 | 98 ± 2 | 99 ± 1 |
A. stephensi | 50 | 100 ± 1 | 99 ± 1 |
C. quinquefasciatus | 50 | 100 ± 0.4 | 100 ± 0 |
D. melanogaster | 50 | 100 ± 1 | 99 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mysore, K.; Graham, J.; Nelaturi, S.; Njoroge, T.M.; Hamid-Adiamoh, M.; Stewart, A.T.M.; Sun, L.; Duman-Scheel, M. An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene. Insects 2025, 16, 481. https://doi.org/10.3390/insects16050481
Mysore K, Graham J, Nelaturi S, Njoroge TM, Hamid-Adiamoh M, Stewart ATM, Sun L, Duman-Scheel M. An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene. Insects. 2025; 16(5):481. https://doi.org/10.3390/insects16050481
Chicago/Turabian StyleMysore, Keshava, Jackson Graham, Saisuhas Nelaturi, Teresia M. Njoroge, Majidah Hamid-Adiamoh, Akilah T. M. Stewart, Longhua Sun, and Molly Duman-Scheel. 2025. "An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene" Insects 16, no. 5: 481. https://doi.org/10.3390/insects16050481
APA StyleMysore, K., Graham, J., Nelaturi, S., Njoroge, T. M., Hamid-Adiamoh, M., Stewart, A. T. M., Sun, L., & Duman-Scheel, M. (2025). An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene. Insects, 16(5), 481. https://doi.org/10.3390/insects16050481