Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Bee Sampling
2.2.2. Plant Sampling
2.3. Statistical Analysis
2.3.1. Network Indices
- (1)
- The weighted connectance (w-C) algorithm was used to obtain a measure of network connectance, or the sum of all realized links in a network divided by the possible links [53]. Its values range between 0 and 1, with higher values indicating increases in realized interactions.
- (2)
- The networklevel modularity function was used to estimate modularity for each network. Modularity values range from 0 to 1, where higher values indicate more subsets of species interacting more among themselves, as compared to other species in the network [54]
- (3)
- H2′ was used to quantify specialization in each network [55]. Its value characterizes the average degree of specialization between the species in the entire network. H2′ values range from 0 to 1, with higher values indicating higher network specialization.
- (4)
- The weighted nestedness metric based on overlap and decreasing fill (w-NODF) algorithm was used to calculate nestedness [56]. Values of nestedness range from 0 to 100, where 0 indicates fully nested networks and 100 represents random networks. Nestedness is a nonrandom pattern where links of specialist species tend to interact with generalist species.
2.3.2. Key Plant Species
Centrality Index Approach
Quantitative Modularity Analysis Approach
2.3.3. Bee Community Composition
3. Results
3.1. Bee Abundance
3.2. Bee Species Richness
3.3. Bee Community Composition
3.4. Network Metrics
3.4.1. Connectance
3.4.2. Modularity
3.4.3. Specialization
3.4.4. Nestedness
3.5. Key Plant Species
3.5.1. Centrality Index Approach
Entire Bee-Plant Network
Meliponine Bee-Plant Network
3.5.2. Quantitative Modularity Analysis Approach
3.6. Key Bee Species
4. Discussion
4.1. Bee Abundance, Species Richness and Community Composition
4.2. Connectance
4.3. Modularity
4.4. Specialization
4.5. Nestedness
4.6. Key Plant Species
4.7. Stingless Bees
4.8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leakey, R.R.B. A Re-Boot of Tropical Agriculture Benefits Food Production, Rural Economies, Health, Social Justice and the Environment. Nat. Food 2020, 1, 260–265. [Google Scholar] [CrossRef]
- Martin, D.A.; Osen, K.; Grass, I.; Hölscher, D.; Tscharntke, T.; Wurz, A.; Kreft, H. Land-Use History Determines Ecosystem Services and Conservation Value in Tropical Agroforestry. Conserv. Lett. 2020, 13, e12740. [Google Scholar] [CrossRef]
- Leakey, R.R.B. From Ethnobotany to Mainstream Agriculture: Socially modified Cinderella species capturing ‘trade-ons’ for ‘land maxing’. Planta 2019, 250, 949–970. [Google Scholar] [CrossRef] [PubMed]
- Asigbaase, M.; Sjogersten, S.; Lomax, B.H.; Dawoe, E. Tree Diversity and Its Ecological Importance Value in Organic and Conventional Cocoa Agroforests in Ghana. PLoS ONE 2019, 14, e0210557. [Google Scholar] [CrossRef]
- Roubik, D.W. Stingless Bee (Apidae: Apinae: Meliponini) Ecology. Annu. Rev. Entomol. 2023, 68, 231–256. [Google Scholar] [CrossRef]
- Fleming, T.H.; Kress, W.J. The Ornaments of Life: Coevolution and Conservation in the Tropics; The University of Chicago Press: Chicago, IL, USA, 2013; ISBN 9780226253404. [Google Scholar]
- Siqueira, E.N.L.; Bartelli, B.F.; Nascimento, A.R.T.; Nogueira-Ferreira, F.H. Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant. Psyche 2012, 2012, 370895. [Google Scholar] [CrossRef]
- Edwards, D.P.; Fisher, B.; Wilcove, D.S. High Conservation Value or High Confusion Value? Sustainable Agriculture and Biodiversity Conservation in the Tropics. Conserv. Lett. 2012, 5, 20–27. [Google Scholar] [CrossRef]
- Caro, A.; Moo-Valle, H.; Alfaro, R.; Quezada-Euán, J.J.G. Pollination Services of Africanized Honey Bees and Native Melipona Beecheii to Buzz-Pollinated Annatto (Bixa Orellana L.) in the Neotropics. Agric. Entomol. 2017, 19, 274–280. [Google Scholar] [CrossRef]
- Bijlsma, L.; De Bruijn, L.L.M.; Martens, E.P.; Sommeijer, M.J. Water Content of Stingless Bee Honeys (Apidae, Meliponini): Interspecific Variation and Comparison with Honey of Apis Mellifera. Apidologie 2006, 37, 480–486. [Google Scholar] [CrossRef]
- Cortopassi-Laurino, M.; Imperatriz-Fonseca, V.L.; Roubik, D.W.; Dollin, A.; Heard, T.; Aguilar, I.; Venturieri, G.C.; Eardley, C.; Noguera-Neto, P. Global Meliponiculture: Challenges and Opportunities. Apidologie 2006, 37, 275–292. [Google Scholar] [CrossRef]
- Vit, P.; Roubik, D.W.; Pedro, S.R.M. Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2012; pp. 1–654. [Google Scholar] [CrossRef]
- Chemurot, M.; Otim, A.S.; Namayanja, D.; Onen, H.; Angiro, C.; Mugume, R.; Kajobe, R.; MacHaria, J.; Gikungu, M.; Abila, P.P.; et al. Stingless Beekeeping in Uganda: An Industry in Its Infancy. Afr. Entomol. 2021, 29, 165–172. [Google Scholar] [CrossRef]
- Conrad, K.M.; Peters, V.E.; Rehan, S.M. Tropical Bee Species Abundance Differs within a Narrow Elevational Gradient. Sci. Rep. 2021, 11, 23368. [Google Scholar] [CrossRef]
- Balvanera, P.; Kremen, C.; Martínez-Ramos, M. Applying Community Structure Analysis to Ecosystem Function: Examples from Pollination and Carbon Storage. Ecol. Appl. 2005, 15, 360–375. [Google Scholar] [CrossRef]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing Human Dominance of Tropical Forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Comer, P.J.; Valdez, J.; Pereira, H.M.; Acosta-Muñoz, C.; Campos, F.; García, F.J.B.; Claros, X.; Castro, L.; Dallmeier, F.; Rivadeneira, E.Y.D.; et al. Conserving Ecosystem Diversity in the Tropical Andes. Remote Sens. 2022, 14, 2847. [Google Scholar] [CrossRef]
- Zattara, E.E.; Aizen, M.A. Worldwide Occurrence Records Suggest a Global Decline in Bee Species Richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- León-Canul, R.A.; Chalé-Dzul, J.B.; Vargas-Díaz, A.A.; Ortiz-Díaz, J.J.; Durán-Escalante, K.C.; Carrillo-Ávila, E.; Santillán-Fernández, A. Identification of Floral Resources Used by the Stingless Bee Melipona Beecheii for Honey Production in Different Regions of the State of Campeche, Mexico. Diversity 2023, 15, 1218. [Google Scholar] [CrossRef]
- Brunet, J.; Fragoso, F.P. What Are the Main Reasons for the Worldwide Decline in Pollinator Populations? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2024, 19, 1–11. [Google Scholar] [CrossRef]
- Castilhos, D.; Dombroski, J.L.D.; Bergamo, G.C.; Gramacho, K.P.; Gonçalves, L.S. Neonicotinoids and Fipronil Concentrations in Honeybees Associated with Pesticide Use in Brazilian Agricultural Areas. Apidologie 2019, 50, 657–668. [Google Scholar] [CrossRef]
- Lourenço, C.T.; Carvalho, S.M.; Malaspina, O.; Nocelli, R.C.F. Oral Toxicity of Fipronil Insecticide against the Stingless Bee Melipona Scutellaris (Latreille, 1811). Bull. Environ. Contam. Toxicol. 2012, 89, 921–924. [Google Scholar] [CrossRef]
- Brosi, B.J.; Armsworth, P.R.; Daily, G.C. Optimal Design of Agricultural Landscapes for Pollination Services. Conserv. Lett. 2008, 1, 27–36. [Google Scholar] [CrossRef]
- Potts, S.G.; Woodcock, B.A.; Roberts, S.P.M.; Tscheulin, T.; Pilgrim, E.S.; Brown, V.K.; Tallowin, J.R. Enhancing Pollinator Biodiversity in Intensive Grasslands. J. Appl. Ecol. 2009, 46, 369–379. [Google Scholar] [CrossRef]
- Razo-León, A.E.; Vásquez-Bolaños, M.; Muñoz-Urias, A.; Huerta-Martínez, F.M. Changes in Bee Community Structure (Hymenoptera, Apoidea) under Three Different Land-Use Conditions. J. Hymenopt. Res. 2018, 66, 23–38. [Google Scholar] [CrossRef]
- Bodo, T.; Gimah, B.G.; Seomoni, K.J. Deforestation and Habitat Loss: Human Causes, Consequences and Possible Solutions. J. Geogr. Res. 2021, 4, 22–30. [Google Scholar] [CrossRef]
- Brosi, B.J.; Daily, G.C.; Shih, T.M.; Oviedo, F.; Durán, G. The Effects of Forest Fragmentation on Bee Communities in Tropical Countryside. J. Appl. Ecol. 2008, 45, 773–783. [Google Scholar] [CrossRef]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.L.; Totland, Ø. How Does Climate Warming Affect Plant-Pollinator Interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef]
- Kammerer, M.; Goslee, S.C.; Douglas, M.R.; Tooker, J.F.; Grozinger, C.M. Wild Bees as Winners and Losers: Relative Impacts of Landscape Composition, Quality, and Climate. Glob. Change Biol. 2021, 27, 1250–1265. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Laliberté, E.; Nielsen, A.; Bascompte, J. Conservation of Species Interaction Networks. Biol. Conserv. 2010, 143, 2270–2279. [Google Scholar] [CrossRef]
- Harvey, E.; Gounand, I.; Ward, C.L.; Altermatt, F. Bridging Ecology and Conservation: From Ecological Networks to Ecosystem Function. J. Appl. Ecol. 2017, 54, 371–379. [Google Scholar] [CrossRef]
- Heleno, R.; Devoto, M.; Pocock, M. Connectance of Species Interaction Networks and Conservation Value: Is It Any Good to Be Well Connected? Ecol. Indic. 2012, 14, 7–10. [Google Scholar] [CrossRef]
- Benadi, G.; Blüthgen, N.; Hovestadt, T.; Poethke, H.J. Contrasting Specialization-Stability Relationships in Plant-Animal Mutualistic Systems. Ecol. Model. 2013, 258, 65–73. [Google Scholar] [CrossRef]
- Carreira, D.C.; Dáttilo, W.; Bruno, D.L.; Percequillo, A.R.; Ferraz, K.M.P.M.B.; Galetti, M. Small Vertebrates Are Key Elements in the Frugivory Networks of a Hyperdiverse Tropical Forest. Sci. Rep. 2020, 10, 10594. [Google Scholar] [CrossRef] [PubMed]
- Hinton, C.R.; Peters, V.E. Plant Species with the Trait of Continuous Flowering Do Not Hold Core Roles in a Neotropical Lowland Plant-Pollinating Insect Network. Ecol. Evol. 2021, 11, 2346–2359. [Google Scholar] [CrossRef] [PubMed]
- Hoiss, B.; Krauss, J.; Steffan-Dewenter, I. Interactive Effects of Elevation, Species Richness and Extreme Climatic Events on Plant-Pollinator Networks. Glob. Change Biol. 2015, 21, 4086–4097. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Blüthgen, N. Integrating Network Ecology with Applied Conservation: A Synthesis and Guide to Implementation. AoB Plants 2015, 7, plv076. [Google Scholar] [CrossRef]
- Acevedo-Quintero, J.F.; Zamora-Abrego, J.G.; García, D. From Structure to Function in Mutualistic Interaction Networks: Topologically Important Frugivores Have Greater Potential as Seed Dispersers. J. Anim. Ecol. 2020, 89, 2181–2191. [Google Scholar] [CrossRef]
- Lázaro, A.; Gómez-Martínez, C.; Alomar, D.; González-Estévez, M.A.; Traveset, A. Linking Species-Level Network Metrics to Flower Traits and Plant Fitness. J. Ecol. 2020, 108, 1287–1298. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Peralta, G.; Cagnolo, L.; Santos, M. Ecological Interaction Networks. What We Know, What We Don’t, and Why It Matters. Ecol. Austral 2022, 32, 670–697. [Google Scholar] [CrossRef]
- Prado, S.G.; Ngo, H.T.; Florez, J.A.; Collazo, J.A. Sampling Bees in Tropical Forests and Agroecosystems: A Review. J. Insect Conserv. 2017, 21, 753–770. [Google Scholar] [CrossRef]
- Eltz, T. Spatio-Temporal Variation of Apine Bee Attraction to Honeybaits in Bornean Forests. J. Trop. Ecol. 2004, 20, 317–324. [Google Scholar] [CrossRef]
- Hanson, P.E.; Otárola, M.F.; Segura, J.L.; Frankie, G.W.; Coville, R.E.; Monge, I.A.; Cordero, M.A.; González, E.H. Bees of Costa Rica; Comstock Publishing Associates/Cornell University Press: Ithaca, NY, USA, 2023; ISBN 9781501769061. [Google Scholar]
- Michener, C.D. The Bees of the World (2); Johns Hopkins University Press: Baltimore, MD, USA, 2010; ISBN 0801885736. [Google Scholar]
- Jarau, S.; Barth, F.G. Stingless Bees of the Golfo Dulce Region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 2008, 80, 267–276. [Google Scholar]
- Aguiar, A.J.C.; Melo, G.A.R. Revision and Phylogeny of the Bee Genus Paratetrapedia Moure, with Description of a New Genus from the Andean Cordillera (Hymenoptera, Apidae, Tapinotaspidini). Zool. J. Linn. Soc. 2011, 162, 351–442. [Google Scholar] [CrossRef]
- Zuchowski, W. Tropical Plants of Costa Rica: A Guide to Native and Exotic Flora; Comstock Publishing Associates/Cornell University Press: Ithaca, NY, USA, 2022; ISBN 1501763075. [Google Scholar]
- Gargiullo, M.B.; Magnuson, B.L.; Kimball, L.D. A Field Guide to Plants of Costa Rica; Oxford University Press: Oxford, UK, 2008; ISBN 9780195188257. [Google Scholar]
- Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c); R Archive Network: Vienna, Austria, 2023. [Google Scholar]
- Bartoń, K. MuMIn: Multi-Model Inference. CRAN: Contributed Packages; R Archive Network: Vienna, Austria, 2010. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Dorman, C.F.; Fruend, J.; Bluethgen, N.; Gruber, B. Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Bersier, L.F.; Banašek-Richter, C.; Cattin, M.F. Quantitative Descriptors of Food-Web Matrices. Ecology 2002, 83, 2394–2407. [Google Scholar] [CrossRef]
- Dehling, D.M. The Structure of Ecological Networks. In Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most Species-Rich Habitats on Earth; Dattilo, W., Rico-Gray, V., Eds.; Springer: New York, NY, USA, 2018; pp. 29–42. ISBN 9783319682273. [Google Scholar]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring Specialization in Species Interaction Networks. BMC Ecol. 2006, 6, 9. [Google Scholar] [CrossRef]
- Almeida-Neto, M.; Ulrich, W. A Straightforward Computational Approach for Measuring Nestedness Using Quantitative Matrices. Environ. Model. Softw. 2011, 26, 173–178. [Google Scholar] [CrossRef]
- Dormann, C.; Gruber, B.; Fründ, J. Introducing the Bipartite Package: Analysing Ecological Networks. Interaction 2008, 1, 8–11. [Google Scholar]
- Sazima, C.; Guimarães, P.R.; Dos Reis, S.F.; Sazima, I. What Makes a Species Central in a Cleaning Mutualism Network? Oikos 2010, 119, 1319–1325. [Google Scholar] [CrossRef]
- Crespo, A.; Aguilar, J.M.; Pintado, K.; Tinoco, B.A. Key Plant Species to Restore Plant–Hummingbird Pollinator Communities in the Southern Andes of Ecuador. Restor. Ecol. 2022, 30, e13557. [Google Scholar] [CrossRef]
- Ulrich, J.K.; Peters, V.E. Integrating Network Theory and Biodiversity Conservation: Do Different Species Selection Approaches Result in Different Recommendations? Biodivers. Conserv. 2023, 32, 1047–1063. [Google Scholar] [CrossRef]
- Dormann, C.F.; Strauss, R. A Method for Detecting Modules in Quantitative Bipartite Networks. Methods Ecol. Evol. 2014, 5, 90–98. [Google Scholar] [CrossRef]
- Watts, S.; Dormann, C.F.; Martín González, A.M.; Ollerton, J. The Influence of Floral Traits on Specialization and Modularity of Plant–Pollinator Networks in a Biodiversity Hotspot in the Peruvian Andes. Ann. Bot. 2016, 118, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Beckett, S.J. Improved Community Detection in Weighted Bipartite Networks. R. Soc. Open Sci. 2016, 3, 140536. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, D.W.; Sabatino, M.; Morellato, L.P.C. Modularity, Pollination Systems, and Interaction Turnover in Plant-Pollinator Networks across Space. Ecology 2016, 97, 1298–1306. [Google Scholar] [CrossRef]
- Vázquez, P.D.; Melián, J.C.; Williams, M.N.; Blüthgen, N.; Krasnov, R.B.; Poulin, R. Species Abundance and Asymmetric Interaction Strength in Ecological Networks. Oikos 2007, 116, 1120–1127. [Google Scholar] [CrossRef]
- Guimerà, R.; Sales-Pardo, M.; Amaral, L.A.N. Classes of Complex Networks Defined by Role-to-Role Connectivity Profiles. Nat. Phys. 2007, 3, 63–69. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The Modularity of Pollination Networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. CRAN: Contributed Packages; R Archive Network: Vienna, Austria, 2001. [Google Scholar]
- Galbraith, S.M.; Griswold, T.; Price, W.J.; Bosque-Pérez, N.A. Biodiversity and Community Composition of Native Bee Populations Vary among Human-Dominated Land Uses within the Seasonally Dry Tropics. J. Insect Conserv. 2020, 24, 1045–1059. [Google Scholar] [CrossRef]
- Centeno-Alvarado, D.; Lopes, A.V.; Arnan, X. Shaping Pollinator Diversity through Coffee Agroforestry Management: A Meta-Analytical Approach. Insect Conserv. Divers. 2024, 17, 729–742. [Google Scholar] [CrossRef]
- Kingazi, N.; Temu, R.A.; Sirima, A.; Jonsson, M. Tropical Agroforestry Supports Insect Pollinators and Improves Bean Yield. J. Appl. Ecol. 2024, 61, 1067–1080. [Google Scholar] [CrossRef]
- Vizentin-Bugoni, J.; Maruyama, P.K.; de Souza, C.S.; Ollerton, J.; Rech, A.R.; Sazima, M. Plant-Pollinator Networks in the Tropics: A Review. In Ecological Networks in the Tropics; Springer International Publishing: New York, NY, USA, 2018; pp. 73–91. [Google Scholar]
- Thébault, E.; Fontaine, C. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Flórez-Gómez, N.A.; Maldonado-Cepeda, J.D.; Ospina-Torres, R. Bee-Plant Interaction Networks in a Seasonal Dry Tropical Forest of the Colombian Caribbean. Neotrop. Entomol. 2020, 49, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Vizentin-Bugoni, J.; Kiyoshi Maruyama, P.; Silveira de Souza, C.; Ollerton, J.; Rodrigo Rech, A.; Sazima, M. Plant-Pollinator Networks in the Tropics: A Review. In Ecological Networks in the Tropics; Dattilo, W., Rico-Gray, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 73–91. ISBN 9783319682273. [Google Scholar]
- Vizentin-Bugoni, J.; Sperry, J.H.; Patrick Kelley, J.; Gleditsch, J.M.; Foster, J.T.; Drake, D.R.; Hruska, A.M.; Wilcox, R.C.; Case, S.B.; Tarwater, C.E.; et al. Ecological Correlates of Species’ Roles in Highly Invaded Seed Dispersal Networks. Proc. Natl. Acad. Sci. USA 2021, 118, e2009532118. [Google Scholar] [CrossRef] [PubMed]
- Martín González, A.M.; Dalsgaard, B.; Nogués-Bravo, D.; Graham, C.H.; Schleuning, M.; Maruyama, P.K.; Abrahamczyk, S.; Alarcón, R.; Araujo, A.C.; Araújo, F.P.; et al. The Macroecology of Phylogenetically Structured Hummingbird-Plant Networks. Global Ecol. Biogeogr. 2015, 24, 1212–1224. [Google Scholar] [CrossRef]
- Pellissier, L.; Albouy, C.; Bascompte, J.; Farwig, N.; Graham, C.; Loreau, M.; Maglianesi, M.A.; Melián, C.J.; Pitteloud, C.; Roslin, T.; et al. Comparing Species Interaction Networks along Environmental Gradients. Biol. Rev. 2018, 93, 785–800. [Google Scholar] [CrossRef]
- Harmon-Threatt, A. Influence of Nesting Characteristics on Health of Wild Bee Communities. Annu. Rev. Entomol. 2020, 65, 39–56. [Google Scholar] [CrossRef]
- Pinheiro, R.B.P.; Felix, G.M.F.; Bell, J.A.; Fecchio, A. The Latitudinal Specialization Gradient of Bird–Malarial Parasite Networks in South America: Lower Connectance, but More Evenly Distributed Interactions towards the Equator. Ecography 2024, 2024, e06763. [Google Scholar] [CrossRef]
- Vaca-Uribe, J.L.; Figueroa, L.L.; Santamaría, M.; Poveda, K. Plant Richness and Blooming Cover Affect Abundance of Flower 1 Visitors and Network Structure in Colombian Orchards. Agric. For. Entomol. 2021, 23, 545–556. [Google Scholar] [CrossRef]
- Escribano-Avila, G.; Lara-Romero, C.; Heleno, R.; Traveset, A. Tropical Seed Dispersal Networks: Emerging Patterns, Biases, and Keystone Species Traits. In Ecological Networks in the Tropics; Dattilo, W., Rico-Gray, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–110. ISBN 9783319682273. [Google Scholar]
- McAlpine, C.; Catterall, C.P.; Mac Nally, R.; Lindenmayer, D.; Reid, J.L.; Holl, K.D.; Bennett, A.F.; Runting, R.K.; Wilson, K.; Hobbs, R.J.; et al. Integrating Plant- and Animal- Based Perspectives for More Effective Restoration of Biodiversity. Front. Ecol. Environ. 2016, 14, 37–45. [Google Scholar] [CrossRef]
- Peters, V.E.; Carlo, T.A.; Mello, M.A.R.; Rice, R.A.; Tallamy, D.W.; Caudill, S.A.; Fleming, T.H. Using Plant-Animal Interactions to Inform Tree Selection in Tree-Based Agroecosystems for Enhanced Biodiversity. Bioscience 2016, 66, 1046–1056. [Google Scholar] [CrossRef]
- Campbell, A.J.; Gigante Carvalheiro, L.; Gastauer, M.; Almeida-Neto, M.; Giannini, T.C. Pollinator Restoration in Brazilian Ecosystems Relies on a Small but Phylogenetically-Diverse Set of Plant Families. Sci. Rep. 2019, 9, 17383. [Google Scholar] [CrossRef]
- Medina-Torres, R.; Salazar-García, S.; Valdivia-Bernal, R.; Martínez-Moreno, E. Flowering Phenology and Reproductive Cycles of Nance [Byrsonima Crassifolia (L.) HBK] in Nayarit. Univ. Cienc. 2012, 28, 259–269. [Google Scholar]









| Entire Bee-Plant Network | Meliponine Bee-Plant Network | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SiteID | Type | Shade Cover (%) | Ave DBH (cm) | Total DBH (cm) | Ave Tree Height (m) | Tree Richness | Total Trees | Z-w-C | Z-Q | Z-w-NODF | Z-H2′ | Plant Species | Bee Species | Z-w-C | Z-Q | Z-w-NODF | Z-H2′ | Plant Species | Bee Species |
| FC | Pasture | 62 | 32.3 | 1838.4 | 7.1 | 31 | 66 | −19.17 | 24.76 | −7.79 | 33.40 | 8 | 27 | −12.56 | 13.56 | −4.87 | 16.93 | 6 | 9 |
| GR | Pasture | 53 | 20.6 | 1629.5 | 5.4 | 26 | 88 | −10.21 | 16.29 | −3.09 | 15.92 | 16 | 31 | −2.89 | 3.58 | −0.45 | 3.96 | 12 | 7 |
| AL | Pasture | 53 | 28.9 | 1967.2 | 7.4 | 19 | 67 | −5.40 | 10.98 | −3.49 | 9.77 | 8 | 28 | −6.74 | 8.66 | −2.85 | 9.57 | 7 | 6 |
| MU | Pasture | 32 | 35.16 | 2812.4 | 8.28 | 18 | 80 | −4.72 | 8.05 | −4.21 | 7.67 | 7 | 29 | −6.00 | 5.19 | −4.18 | 7.32 | 4 | 9 |
| RE | Pasture | 39 | 38 | 1595.7 | 7.7 | 25 | 56 | −15.87 | 24.20 | −5.81 | 26.82 | 13 | 39 | −14.22 | 16.11 | −5.23 | 21.32 | 12 | 12 |
| HA | Coffee | 72 | 30.2 | 2654.4 | 5.6 | 20 | 89 | −3.49 | 16.02 | −3.78 | 12.59 | 13 | 35 | −3.06 | 9.18 | −3.50 | 7.33 | 9 | 8 |
| IA | Coffee | 73 | 19.1 | 1810 | 6.6 | 37 | 70 | −14.12 | 15.78 | −6.77 | 21.77 | 12 | 30 | −15.40 | 13.72 | −2.74 | 20.72 | 11 | 10 |
| NS | Coffee | 68 | 33.1 | 4441.5 | 10.2 | 34 | 80 | −19.33 | 28.19 | −10.93 | 34.39 | 5 | 33 | −20.70 | 17.87 | −5.81 | 29.65 | 5 | 10 |
| VR | Coffee | 67 | 47.8 | 1769.8 | 9.6 | 27 | 42 | −11.97 | 19.10 | −4.28 | 21.00 | 17 | 28 | −11.20 | 17.29 | −2.90 | 18.08 | 15 | 14 |
| WL | Coffee | 72 | 30.6 | 1622.9 | 8.2 | 22 | 44 | −6.88 | 8.41 | −4.06 | 9.79 | 10 | 35 | −5.47 | 7.55 | −3.29 | 7.69 | 9 | 7 |
| Bee Species Richness | Bee Abundance | w C | Modularity | H2’ | w NODF | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Model (Entire) | AICc | ΔAICc | w | est ± s.e. | AICc | ΔAICc | w | est ± s.e. | AICc | ΔAICc | w | est ± s.e. | AICc | ΔAICc | w | est ± s.e. | AICc | ΔAICc | w | est ± s.e. | AICc | ΔAICc | w | est ± s.e. |
| Null | 280.34 | 0.00 | 0.26 | 428.52 | 0.28 | 0.19 | 23.27 | 8.09 | 0.02 | 16.61 | 1.53 | 0.23 | 20.65 | 6.96 | 0.03 | 14.84 | 6.00 | 0.03 | ||||||
| Percent Shade Cover | 282.26 | 1.92 | 0.10 | −0.003 ± 0.005 | 430.99 | 2.75 | 0.05 | 0.001 ± 0.001 | 27.39 | 12.21 | 0.00 | −0.005 ± 0.01 | 20.47 | 5.39 | 0.03 | 0.006 ± 0.01 | 24.21 | 10.52 | 0.00 | 0.01 ± 0.01 | 18.61 | 9.77 | 0.00 | −0.006 ± 0.01 |
| Number of Flowering Plant Species | 282.53 | 2.19 | 0.09 | −0.01 ± 0.02 | 428.24 | 0.00 | 0.22 | 0.05 ± 0.03 | 27.3 | 12.12 | 0.00 | −0.01 ± 0.04 | 20.40 | 5.32 | 0.03 | 0.02 ± 0.04 | 24.60 | 10.91 | 0.00 | 0.01 ± 0.04 | 17.56 | 8.72 | 0.01 | 0.05 ± 0.02 |
| Number of Tree Species | 282.81 | 2.47 | 0.08 | 0.001 ± 0.01 | 430.33 | 2.09 | 0.08 | 0.01 ± 0.02 | 15.18 | 0.00 | 0.92 | −0.08± 0.02 | 15.08 | 0.00 | 0.49 | 0.05 ± 0.02 | 13.69 | 0.00 | 0.89 | 0.07 ± 0.02 | 10.38 | 1.54 | 0.29 | −0.05 ± 0.01 |
| Total Tree DBH | 282.71 | 2.37 | 0.08 | 0.07 ± 0.2 | 430.74 | 2.50 | 0.06 | −0.18 ± 0.36 | 27.54 | 12.36 | 0.00 | 0.14 ± 0.66 | 20.63 | 5.55 | 0.03 | 0.21 ± 0.46 | 24.86 | 11.17 | 0.00 | 0.13 ± 0.57 | 16.74 | 7.90 | 0.01 | −0.56 ± 0.38 |
| Average Tree Height | 282.57 | 2.23 | 0.09 | 0.02 ± 0.05 | 430.75 | 2.51 | 0.06 | −0.04 ± 0.08 | 26.34 | 11.16 | 0.00 | −0.13 ± 0.13 | 20.70 | 5.62 | 0.03 | 0.04 ± 0.10 | 24.41 | 10.72 | 0.00 | 0.08 ± 0.12 | 16.60 | 7.76 | 0.01 | −0.12 ± 0.08 |
| Average Tree DBH | 282.77 | 2.43 | 0.08 | 0.002 ± 0.009 | 430.72 | 2.48 | 0.06 | −0.007 ± 0.014 | 27.49 | 12.31 | 0.00 | −0.01 ± 0.03 | 20.56 | 5.48 | 0.03 | 0.01 ± 0.02 | 24.76 | 11.07 | 0.00 | 0.008 ± 0.02 | 19.06 | 10.22 | 0.00 | −0.004 ± 0.02 |
| Total Number of Open Blooms | 281.57 | 1.23 | 0.14 | −0.08 ± 0.07 | 429.00 | 0.76 | 0.15 | 0.18 ± 0.13 | 27.39 | 12.21 | 0.00 | −0.08 ± 0.26 | 19.39 | 4.31 | 0.06 | 0.20 ± 0.18 | 24.18 | 10.49 | 0.00 | 0.18 ± 0.22 | 19.11 | 10.27 | 0.00 | 0.016 ± 0.17 |
| Total Number of Trees | 282.82 | 2.48 | 0.07 | 0.001 ± 0.004 | 430.99 | 2.75 | 0.05 | −0.001 ± 0.001 | 26.87 | 11.69 | 0.00 | 0.01 ± 0.01 | 20.85 | 5.77 | 0.03 | 0.002 ± 0.01 | 24.86 | 11.17 | 0.00 | −0.003 ± 0.01 | 19.12 | 10.28 | 0.00 | 0.001 ± 0.01 |
| Number of Tree Species + Number of Flowering Plant Species | 285.11 | 4.77 | 0.02 | 430.40 | 2.16 | 0.07 | 21.04 | 5.86 | 0.05 | 20.68 | 5.60 | 0.03 | 19.45 | 5.76 | 0.05 | 8.84 | 0.00 | 0.63 | ||||||
| Model (Meliponine) | ||||||||||||||||||||||||
| Null | 25.41 | 2.30 | 0.14 | 20.80 | 0.00 | 0.26 | 24.14 | 1.71 | 0.18 | 26.53 | 0.00 | 0.28 | ||||||||||||
| Percent Shade Cover | 29.62 | 6.51 | 0.02 | −0.004 ± 0.02 | 23.71 | 2.91 | 0.06 | 0.013 ± 0.01 | 27.97 | 5.54 | 0.03 | 0.01 ± 0.02 | 30.81 | 4.28 | 0.03 | −0.001 ± 0.02 | ||||||||
| Number of Flowering Plant Species | 29.54 | 6.43 | 0.02 | 0.04 ± 0.06 | 24.97 | 4.17 | 0.03 | 0.01 ± 0.05 | 28.40 | 5.97 | 0.02 | −0.017 ± 0.06 | 28.26 | 1.73 | 0.12 | 0.099 ± 0.07 | ||||||||
| Number of Tree Species | 23.11 | 0.00 | 0.45 | −0.07 ± 0.03 | 21.36 | 0.56 | 0.19 | 0.05 ± 0.02 | 22.43 | 0.00 | 0.42 | 0.07 ± 0.03 | 30.77 | 4.24 | 0.03 | −0.008 ± 0.04 | ||||||||
| Total Tree DBH | 29.31 | 6.20 | 0.02 | −0.41 ± 0.72 | 24.84 | 4.04 | 0.03 | 0.26 ± 0.57 | 27.79 | 5.36 | 0.03 | 0.48 ± 0.67 | 28.93 | 2.40 | 0.08 | −0.91 ± 0.70 | ||||||||
| Average Tree Height | 24.46 | 1.35 | 0.23 | −0.28 ± 0.12 | 21.78 | 0.98 | 0.16 | 0.19 ± 0.10 | 23.97 | 1.54 | 0.19 | 0.25 ± 0.12 | 26.99 | 0.46 | 0.22 | −0.26 ± 0.14 | ||||||||
| Average Tree DBH | 28.76 | 5.65 | 0.03 | −0.02 ± 0.03 | 22.60 | 1.80 | 0.10 | 0.03 ± 0.02 | 27.00 | 4.57 | 0.04 | 0.03 ± 0.03 | 27.78 | 1.25 | 0.15 | −0.04 ± 0.03 | ||||||||
| Total Number of Open Blooms | 29.57 | 6.46 | 0.02 | −0.09 ± 0.29 | 23.81 | 3.01 | 0.06 | 0.23 ± 0.22 | 27.40 | 4.97 | 0.03 | 0.20 ± 0.27 | 30.61 | 4.08 | 0.04 | 0.12 ± 0.31 | ||||||||
| Total Number of Trees | 28.19 | 5.08 | 0.04 | 0.02 ± 0.01 | 22.90 | 2.10 | 0.09 | −0.01 ± 0.01 | 27.13 | 4.70 | 0.04 | −0.01 ± 0.01 | 29.92 | 3.39 | 0.05 | 0.01 ± 0.01 | ||||||||
| Number of Tree Species + Number of Flowering Plant Species | 28.26 | 5.15 | 0.03 | 27.33 | 6.53 | 0.01 | 28.13 | 5.70 | 0.02 | 34.09 | 7.56 | 0.01 | ||||||||||||
| Bee Tribe | Bee Species | Aerial Net Flowers | Aerial Net Honey Baits | |
|---|---|---|---|---|
| Rainy Season | Dry Season | |||
| Anthidiini | 1 | 6 | 0 | |
| Anthidiellum msp 1 | 1 | 0 | 0 | |
| Anthidiini msp 2 | 0 | 2 | 0 | |
| Anthidiini msp 3 | 0 | 3 | 0 | |
| Anthidiini msp 4 | 0 | 1 | 0 | |
| Apini | 67 | 60 | 88 | |
| Apis mellifera | 67 | 60 | 88 | |
| Augochlorini | 270 | 23 | 25 | |
| Augochlora msp 1 | 39 | 0 | 2 | |
| Augochlora msp 11 | 1 | 0 | 0 | |
| Augochlora msp 15 | 1 | 0 | 0 | |
| Augochlora msp 19 | 1 | 0 | 0 | |
| Augochlora msp 20 | 1 | 0 | 0 | |
| Augochlora msp 21 | 3 | 0 | 1 | |
| Augochlora msp 3 | 7 | 0 | 0 | |
| Augochlora msp 5 | 17 | 0 | 1 | |
| Augochlora msp 6 | 12 | 3 | 0 | |
| Augochlora msp 8 | 10 | 1 | 4 | |
| Augochlora nigrocyanea | 8 | 0 | 0 | |
| Augochlorella comis | 16 | 4 | 6 | |
| Augochlorella neglectula | 7 | 0 | 6 | |
| Augochlorini msp 1 | 39 | 0 | 4 | |
| Augochlorini msp 10 | 1 | 0 | 0 | |
| Augochlorini msp 11 | 0 | 1 | 1 | |
| Augochlorini msp 12 | 3 | 2 | 0 | |
| Augochlorini msp 2 | 2 | 0 | 0 | |
| Augochlorini msp 3 | 21 | 5 | 0 | |
| Augochlorini msp 4 | 6 | 0 | 0 | |
| Augochlorini msp 6 | 4 | 0 | 0 | |
| Augochlorini msp 8 | 1 | 0 | 0 | |
| Augochloropsis ignita | 5 | 0 | 1 | |
| Augochloropsis msp 1 | 23 | 1 | 4 | |
| Augochloropsis msp 3 | 22 | 6 | 6 | |
| Pereirapis semiaurata | 9 | 0 | 0 | |
| Pseudaugochlora graminea | 11 | 0 | 0 | |
| Ceratinini | 185 | 35 | 5 | |
| Ceratina buscki | 37 | 9 | 0 | |
| Ceratina cobaltina | 1 | 4 | 1 | |
| Ceratina dimidata | 11 | 0 | 0 | |
| Ceratina eximia | 24 | 0 | 1 | |
| Ceratina msp. 10 | 8 | 0 | 1 | |
| Ceratina msp. 9 | 3 | 0 | 0 | |
| Ceratina rectangulifera | 91 | 17 | 2 | |
| Ceratina trimaculata | 7 | 5 | 0 | |
| Ceratina zeteki | 3 | 0 | 0 | |
| Megachilini | 156 | 0 | 3 | |
| Coelioxys msp 1 | 13 | 0 | 0 | |
| Coelioxys msp 2 | 8 | 0 | 1 | |
| Coelioxys msp 3 | 1 | 0 | 0 | |
| Megachile msp 10 | 6 | 0 | 1 | |
| Megachile msp 11 | 3 | 0 | 0 | |
| Megachile msp 12 | 29 | 0 | 0 | |
| Megachile msp 13 | 45 | 0 | 1 | |
| Megachile msp 14 | 1 | 0 | 0 | |
| Megachile msp 15 | 1 | 0 | 0 | |
| Megachile msp 16 | 13 | 0 | 0 | |
| Megachile msp 3 | 2 | 0 | 0 | |
| Megachile msp 7 | 34 | 0 | 0 | |
| Meliponini | 1095 | 754 | 1252 | |
| Cephalotrigona zexmeniae | 6 | 14 | 0 | |
| Geotrigona chiriquiensis | 31 | 59 | 23 | |
| Lestrimelitta danuncia | 1 | 0 | 0 | |
| Melipona beecheii | 1 | 2 | 0 | |
| Melipona panamica | 6 | 14 | 2 | |
| Nannotrigona mellaria | 5 | 4 | 50 | |
| Nannotrigona perilampoides | 1 | 1 | 1 | |
| Partamona orizabaensis | 195 | 71 | 433 | |
| Plebeia frontalis | 28 | 19 | 312 | |
| Plebeia jatiformis | 6 | 14 | 62 | |
| Plebeia pulchra | 31 | 25 | 117 | |
| Scaptotrigona pectoralis | 1 | 36 | 0 | |
| Scaptotrigona subobscuripennis | 11 | 61 | 8 | |
| Tetragona ziegleri | 58 | 24 | 3 | |
| Tetratrigonisca angustula | 76 | 194 | 28 | |
| Trigona corvina | 124 | 48 | 44 | |
| Trigona fulviventris | 312 | 86 | 36 | |
| Trigona silvestriana | 170 | 58 | 41 | |
| Trigonisca pipioli | 32 | 24 | 92 | |
| Tapinotaspidini | 214 | 3 | 1 | |
| Paratetrapedia calcarata | 88 | 2 | 1 | |
| Paratetrapedia connexa | 1 | 0 | 0 | |
| Paratetrapedia lugubris | 42 | 0 | 0 | |
| Paratetrapedia albilabris | 80 | 1 | 0 | |
| Lophopedia pygmaea | 3 | 0 | 0 | |
| Totals | 1988 | 881 | 1374 | |
| Plant Family | Plant Species | Rainy Season | Dry Season | Top 5 Centrality Index | Topological Role |
|---|---|---|---|---|---|
| Acanthaceae | Aphelandra scabra | x | |||
| Acanthaceae | Asystasia gangetica | x | |||
| Acanthaceae | Pachystachys lutea | x | |||
| Acanthaceae | Sanchezia parvibracteata | x | |||
| Acanthaceae | Thunbergia erecta | x | |||
| Amaranthaceae | Achyranthes aspera | x | |||
| Amaranthaceae | Celosia spicata | x | |||
| Amaranthaceae | Gomphrena globoso | x | |||
| Amaryllidaceae | Hippeastrum spp. | x | |||
| Apiaceae | Eryngium foetidum | x | |||
| Apocynaceae | Asclepias curassavica | x | |||
| Asparagaceae | Cordyline fruticosa | x | |||
| Asteraceae | Acmella radicans | x | |||
| Asteraceae | Bidens spp. | x | |||
| Asteraceae | Clibadium sp. | x | |||
| Asteraceae | Cosmos sulphureus | x | x | ER; MR | Module hub |
| Asteraceae | Lasianthaea fruticosa | x | x | ER; MD | |
| Asteraceae | Melampodium perfoliatum | x | x | ||
| Asteraceae | Milleria quinqueflora | x | ER; MR | Module hub | |
| Asteraceae | Montanoa guatemalensis | x | ED; MD | Module hub | |
| Asteraceae | Montanoa tomentosa | x | |||
| Asteraceae | Pseudelephantopus spicatus | x | |||
| Asteraceae | Synedrella nodiflora | x | |||
| Asteraceae | Tagetes spp. | x | |||
| Asteraceae | Zinnia spp. | x | x | ||
| Balsaminaceae | Impatiens balsamina | x | x | ER | |
| Balsaminaceae | Impatiens spp. | x | x | ||
| Begoniaceae | Begonia spp. | x | Module hub | ||
| Boraginaceae | Ehretia latifolia | x | ED; MD | Module hub | |
| Cactaceae | Cactaceae sp. | x | |||
| Cleomaceae | Cleome spp. | x | |||
| Commelinaceae | Commelina erecta | x | |||
| Commelinaceae | Tripogandra serrulata | x | x | ||
| Cucurbitaceae | Cucurbita moschata | x | MR | ||
| Cucurbitaceae | Sicyos edulis | x | |||
| Euphorbiaceae | Cnidoscolus aconitifolius | x | |||
| Euphorbiaceae | Croton draco | x | |||
| Euphorbiaceae | Euphorbia graminea | x | |||
| Euphorbiaceae | Euphorbia leucocephala | x | |||
| Euphorbiaceae | Euphorbia pulcherrima | x | |||
| Euphorbiaceae | Jatropha multifida | x | x | ||
| Euphorbiaceae | Manihot esculenta | x | |||
| Fabaceae | Caesalpinia pulcherrima | x | x | ||
| Fabaceae | Inga spp. | x | |||
| Fabaceae | Mimosa pudica | x | x | ||
| Fabaceae | Senna alata | x | |||
| Hydrangeaceae | Hydrangea spp. | x | |||
| Iridaceae | Trimezia stayermarkii | x | |||
| Lamiaceae | Nepetoideae sp. | x | |||
| Lamiaceae | Ocimum basilicum | x | x | Connector | |
| Lamiaceae | Pycnanthemum muticum | x | |||
| Lamiaceae | Salvia colonica | x | Connector | ||
| Lamiaceae | Salvia occidentalis | x | |||
| Lauraceae | Persea americana | x | |||
| Liliaceae | Lilium spp. | x | |||
| Lythraceae | Cuphea hyssopifolia | x | x | ||
| Malpighiaceae | Byrsonima crassifolia | x | Connector | ||
| Malpighiaceae | Galphimia glauca | x | |||
| Malvaceae | Gossypium spp. | x | |||
| Malvaceae | Sida rhombifolia | x | |||
| Malvaceae | Triumfetta lappula | x | ED | ||
| Malvaceae | Triumfetta semitriloba | x | |||
| Marcgraviaceae | Marcgraviaceae sp. | x | |||
| Melastomataceae | Pleroma urvilleanum | x | |||
| Musaceae | Musa acuminata | x | x | ED; MR; MD | |
| Myrtaceae | Myrtaceae sp. | x | |||
| Myrtaceae | Pimenta dioica | x | |||
| Myrtaceae | Psidium friedrichsthalium | x | |||
| Myrtaceae | Psidium guayaba | x | |||
| Nyctaginaceae | Mirabilis jalapa | x | |||
| Onagraceae | Ludwigia octovalvis | x | |||
| Orchidaceae | Orchidaceae sp. | x | |||
| Passifloraceae | Turnera ulmifolia | x | x | Module hub | |
| Piperaceae | Piperaceae sp. | x | MD | ||
| Portulacaceae | Portulaca spp. | x | x | ||
| Ranunculaceae | Clematis spp. | x | |||
| Rhamnaceae | Gouania lupuloides | x | |||
| Rosaceae | Eriobotrya japonica | x | |||
| Rosaceae | Rose spp. | x | x | ||
| Rubiaceae | Hamelia patens | x | x | ER; MR | Module hub; Connector |
| Rubiaceae | Pentas spp. | x | x | ||
| Rubiaceae | Psychotria pubescens | x | |||
| Rubiaceae | Psychotria tenuifolia | x | |||
| Rutaceae | Citrus spp. | x | |||
| Salicaceae | Casearia sylvestris | x | |||
| Solanaceae | Acnistus arborensens | x | |||
| Solanaceae | Capsicum spp. | x | |||
| Solanaceae | Physalis philadelphica | x | |||
| Solanaceae | Solanaceae sp. | x | |||
| Solanaceae | Solanum americana | x | |||
| Solanaceae | Solanum wendlandii | x | |||
| Solanaceae | Streptosolen jamesonii | x | |||
| Thymelaeaceae | Daphnopsis americana | x | |||
| Unknown | Unknown sp. 1 | x | |||
| Unknown | Unknown sp. 2 | x | |||
| Unknown | Unknown sp. 3 | x | |||
| Unknown | Unknown sp. 4 | x | ED | ||
| Unknown | Unknown sp. 5 | x | |||
| Unknown | Unknown sp. 6 | x | |||
| Unknown | Unknown sp. 7 | x | |||
| Unknown | Unknown sp. 8 | x | |||
| Unknown | Unknown sp. 9 | x | |||
| Verbenaceae | Duranta erecta | x | x | ||
| Verbenaceae | Lantana camara | x | x | ||
| Verbenaceae | Lantana velutina | x | |||
| Verbenaceae | Stachytarpheta frantzii | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, V.E.; Cardona, E.C. Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions. Insects 2025, 16, 1269. https://doi.org/10.3390/insects16121269
Peters VE, Cardona EC. Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions. Insects. 2025; 16(12):1269. https://doi.org/10.3390/insects16121269
Chicago/Turabian StylePeters, Valerie E., and Elijah Cruz Cardona. 2025. "Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions" Insects 16, no. 12: 1269. https://doi.org/10.3390/insects16121269
APA StylePeters, V. E., & Cardona, E. C. (2025). Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions. Insects, 16(12), 1269. https://doi.org/10.3390/insects16121269

