Pleiotropic Function of Antenna-Specific Odorant-Binding Protein Links Xenobiotic Adaptation and Olfaction in Leptinotarsa decemlineata
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. In Silico Structural and Phylogenetic Analyses
2.3. RNA Extraction, cDNA Synthesis, and qRT-PCR
2.4. RNA Interference (RNAi)
2.5. Heterologous Expression and Purification of LdecOBP33
2.6. Fluorescence Binding Assay
2.7. LdecOBP33 Protein Model and Ligand Docking
2.8. Whole-Antenna Contact Bioassay with Imidacloprid
2.9. Behavioral Assay
2.10. Statistical Analysis
3. Results
3.1. Expression Patterns of LdecOBP33 and Bioinformatic Analyses
3.2. Binding of LdecOBP33 with Various Plant Volatiles and Pesticides
3.3. Structure Modeling and Molecular Docking with Nonanal and Imidacloprid
3.4. Contribution of LdecOBP33 to Imidacloprid Resistance in CPB
3.5. Roles of LdecOBP33 in Host Location
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OBPs | Odorant-binding proteins |
| CPB | Colorado potato beetle |
| RNAi | RNA interference |
| dsRNA | Double-stranded RNA |
| PMSF | Phenylmethylsulfonyl fluoride |
| IPTG | Isopropyl β-d-1-thiogalactopyranoside |
| EDTA | Ethylenediaminetetraacetic acid |
| SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
References
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Hansson, B.S.; Stensmyr, M.C. Evolution of insect olfaction. Neuron 2011, 72, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.R.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.C.; Fadamiro, H.Y.; Cosse, A.A. Moth uses fine tuning for odour resolution. Nature 1998, 393, 530. [Google Scholar] [CrossRef]
- Abendroth, J.A.; Moural, T.W.; Wei, H.S.; Zhu, F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. Front. Insect Sci. 2023, 3, 13. [Google Scholar] [CrossRef]
- Leal, W.S. Pheromone reception. In The Chemistry of Pheromones and Other Semiochemicals II; Schulz, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–36. [Google Scholar]
- Brito, N.F.; Moreira, M.F.; Melo, A.C.A. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 2016, 95, 51–65. [Google Scholar] [CrossRef]
- Whiteman, N.K.; Pierce, N.E. Delicious poison: Genetics of Drosophila host plant preference. Trends Ecol. Evol. 2008, 23, 473–478. [Google Scholar] [CrossRef]
- Tricoire-Leignel, H.; Thany, S.H.; Gadenne, C.; Anton, S. Pest insect olfaction in an insecticide-contaminated environment: Info-disruption or hormesis effect. Front. Physiol. 2012, 3, 6. [Google Scholar] [CrossRef]
- Honson, N.; Johnson, M.A.; Oliver, J.E.; Prestwich, G.D.; Plettner, E. Structure–activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses 2003, 28, 479–489. [Google Scholar] [CrossRef]
- Gong, Y.; Pace, T.C.S.; Castillo, C.; Bohne, C.; O’Neill, M.A.; Plettner, E. Ligand-interaction kinetics of the pheromone-binding protein from the gypsy moth, L. dispar: Insights into the mechanism of binding and release. Chem. Biol. 2009, 16, 162–172. [Google Scholar] [CrossRef]
- Larter, N.K.; Sun, J.S.; Carlson, J.R. Organization and function of Drosophila odorant binding proteins. eLife 2016, 5, e20242. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Murphy, E.J.; Nix, J.C.; Jones, D.N.M. Aedes aegypti odorant binding protein 22 selectively binds fatty acids through a conformational change in its C-terminal tail. Sci. Rep. 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.D. Ecology and management of the Colorado potato beetle. Annu. Rev. Entomol. 1990, 35, 81–100. [Google Scholar] [CrossRef]
- Grafius, E. Economic impact of insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Michigan potato industry. J. Econ. Entomol. 1997, 90, 1144–1151. [Google Scholar] [CrossRef]
- Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E. Colorado potato beetle resistance to insecticides. Am. J. Potato Res. 2008, 85, 395–413. [Google Scholar] [CrossRef]
- Chaudhary, M. Recent Trends in Insect Pest Management; AkiNik Publications: New Delhi, India, 2020; Volume 2, pp. 131–143. [Google Scholar]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database. 2025. Available online: https://www.pesticideresistance.org/ (accessed on 14 February 2025).
- Zhu, F.; Lavine, L.; O’Neal, S.; Lavine, M.; Foss, C.; Walsh, D. Insecticide resistance and management strategies in urban ecosystems. Insects 2016, 7, 2. [Google Scholar] [CrossRef]
- Zhu, F.; Moural, T.W.; Nelson, D.R.; Palli, S.R. A specialist herbivore pest adapts to xenobiotics through upregulation of multiple cytochrome P450s. Sci. Rep. 2016, 6, 20421. [Google Scholar] [CrossRef]
- Koirala, B.K.S.; Moural, T.; Zhu, F. Functional and structural diversity of insect glutathione S-transferases in xenobiotic adaptation. Int. J. Biol. Sci. 2022, 18, 5713. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Orsák, M.; Pivec, V. Potato glycoalkaloids and their significance in plant protection and human nutrition: A review. Rostl. Výroba 2001, 47, 181–191. [Google Scholar]
- Chowanski, S.; Adamski, Z.; Marciniak, P.; Rosinski, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef]
- Liu, Y.; Moural, T.; Koirala, B.K.S.; Hernandez, J.; Shen, Z.; Alyokhin, A.; Zhu, F. Structural and functional characterization of one unclassified glutathione S-transferase in xenobiotic adaptation of Leptinotarsa decemlineata. Int. J. Mol. Sci. 2021, 22, 11921. [Google Scholar] [CrossRef] [PubMed]
- Sablon, L.; Dickens, J.C.; Haubruge, É.; Verheggen, F.J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 2013, 4, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Bolter, C.J.; Dicke, M.; van Loon, J.J.A.; Visser, J.H.; Posthumus, M.A. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 1997, 23, 1003–1023. [Google Scholar] [CrossRef]
- Visser, J.H. Electroantennogram responses of the Colorado beetle, Leptinotarsa decemlineata, to plant volatiles. Entomol. Exp. Appl. 1979, 25, 86–97. [Google Scholar] [CrossRef]
- Schutz, S.; Weißbecker, B.; Klein, A.; Hummel, H.E. Host plant selection of the Colorado potato beetle as influenced by damage-induced volatiles of the potato plant. Naturwissenschaften 1997, 84, 212–217. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wang, L.; Liu, S.; Wu, S.; Yang, Y.; Feyereisen, R.; Wu, Y. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 2018, 9, 4820. [Google Scholar] [CrossRef]
- Karageorgi, M.; Groen, S.C.; Sumbul, F.; Pelaez, J.N.; Verster, K.I.; Aguilar, J.M.; Hastings, A.P.; Bernstein, S.L.; Matsunaga, T.; Astourian, M.; et al. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 2019, 574, 409–412. [Google Scholar] [CrossRef]
- Heckel, D.G. Insect detoxification and sequestration strategies. In Annual Plant Reviews: Insect‐Plant Interactions; Voelckel, C., Jander, G., Eds.; Wiley-Blackwell: Chichester, UK, 2014; Volume 47, pp. 77–144. [Google Scholar]
- Schoville, S.D.; Chen, Y.H.; Andersson, M.N.; Benoit, J.B.; Bhandari, A.; Bowsher, J.H.; Brevik, K.; Cappelle, K.; Chen, M.-J.M.; Childers, A.K.; et al. A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci. Rep. 2018, 8, 1931. [Google Scholar] [CrossRef]
- Chen, J.; Alyokhin, A.; Mota-Sanchez, D.; Baker, M.; Whalon, M. Variation in fitness among geographically isolated Colorado potato beetle (Coleoptera: Chrysomelidae) populations. Ann. Entomol. Soc. Am. 2014, 107, 128–135. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Xu, J.; Palli, R.; Ferguson, J.; Palli, S.R. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 2011, 67, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Moural, T.W.; Ban, L.; Hernandez, J.A.; Wu, M.; Zhao, C.; Palli, S.R.; Alyokhin, A.; Zhu, F. Silencing NADPH–cytochrome P450 reductase affects imidacloprid susceptibility, fecundity, and embryonic development in Leptinotarsa decemlineata. bioRxiv 2020. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Löbel, D.; Strotmann, J.; Jacob, M.; Breer, H. Identification of a third rat odorant-binding protein (OBP3). Chem. Senses 2001, 26, 673–680. [Google Scholar] [CrossRef]
- Brulé, M.; Glaz, M.; Belloir, C.; Poirier, N.; Moitrier, L.; Neiers, F.; Briand, L. Bacterial expression and purification of vertebrate odorant-binding proteins. Methods Enzymol. 2020, 642, 125–150. [Google Scholar] [CrossRef]
- Song, L.-M.; Jiang, X.; Wang, X.-M.; Li, J.-D.; Zhu, F.; Tu, X.-B.; Zhang, Z.-H.; Ban, L.-P. Male tarsi-specific odorant-binding proteins in the diving beetle Cybister japonicus Sharp. Sci. Rep. 2016, 6, 31848. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Pei, Y.; Liao, W.; Zhang, X.; Lu, M. Odorant binding protein 2 in Spodoptera frugiperda involves insecticide phoxim susceptibility. Entomol. Gen. 2024, 44, 1576–1588. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Zaremska, V.; Zhu, J.; Knoll, W.; Pelosi, P. Ligand-binding assays with OBPs and CSPs. In Methods in Enzymology; Pelosi, P., Knoll, W., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 642, pp. 229–258. [Google Scholar] [CrossRef]
- Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 2018, 430, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Liggri, P.G.V.; Tsitsanou, K.E.; Stamati, E.C.V.; Saitta, F.; Drakou, C.E.; Leonidas, D.D.; Fessas, D.; Zographos, S.E. The structure of AgamOBP5 in complex with the natural insect repellents carvacrol and thymol: Crystallographic, fluorescence and thermodynamic binding studies. Int. J. Biol. Macromol. 2023, 237, 124009. [Google Scholar] [CrossRef] [PubMed]
- Kruse, S.W.; Zhao, R.; Smith, D.P.; Jones, D.N.M. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Mol. Biol. 2003, 10, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Rosignoli, S.; Paiardini, A. DockingPie: A consensus docking plugin for PyMOL. Bioinformatics 2022, 38, 4233–4234. [Google Scholar] [CrossRef]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-Z.; Bishop, B.A.; Grafius, E.J. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2000, 93, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Mota-Sanchez, D.; Hollingworth, R.M.; Grafius, E.J.; Moyer, D.D. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2006, 62, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Gouinguené, S.P.; Turlings, T.C.J. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002, 129, 1296–1307. [Google Scholar] [CrossRef]
- Li, D.-Z.; Huang, X.-F.; Yang, R.-N.; Chen, J.-Y.; Wang, M.-Q. Functional analysis of two odorant-binding proteins, MaltOBP9 and MaltOBP10, in Monochamus alternatus Hope. Front. Physiol. 2020, 11, 317. [Google Scholar] [CrossRef]
- Li, N.; Sun, X.; Wang, M.-Q. Expression pattern and ligand-binding properties of odorant-binding protein 13 from Monochamus alternatus Hope. J. Appl. Entomol. 2017, 141, 751–757. [Google Scholar] [CrossRef]
- Coates, B.S.; Walden, K.K.O.; Lata, D.; Vellichirammal, N.N.; Mitchell, R.F.; Andersson, M.N.; McKay, R.; Lorenzen, M.D.; Grubbs, N.; Wang, Y.-H.; et al. A draft Diabrotica virgifera virgifera genome: Insights into control and host plant adaptation by a major maize pest insect. BMC Genom. 2023, 24, 19. [Google Scholar] [CrossRef]
- Andersson, M.N.; Keeling, C.I.; Mitchell, R.F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genom. 2019, 20, 690. [Google Scholar] [CrossRef]
- Dippel, S.; Oberhofer, G.; Kahnt, J.; Gerischer, L.; Opitz, L.; Schachtner, J.; Stanke, M.; Schütz, S.; Wimmer, E.A.; Angeli, S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genom. 2014, 15, 1141. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Neubig, R.R. Analyzing binding data. Curr. Protoc. Neurosci. 2010, 52, 7.5.1–7.5.65. [Google Scholar] [CrossRef]
- Cheng, Y.; Prusoff, W.H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, C.; Fu, G.; Tang, R.; Yang, N.; Liu, W.; Qian, W.; Wan, F. Molecular and functional characterization of three general odorant-binding protein 2 genes in Cydia pomonella (Lepidoptera: Tortricidae). Int. J. Mol. Sci. 2024, 25, 1746. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, Y.; Wei, Z.-Q.; Hou, J.-H.; Si, Y.-X.; Zhang, J.; Dong, S.-L.; Yan, Q. Identification and functional characterization of general odorant binding proteins in Orthaga achatina. Insects 2023, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Purba, E.R.; Sun, J.; Zhang, Q.H.; Dong, S.L.; Zhang, Y.N.; He, P.; Mang, D.; Zhang, L. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). Pest Manag. Sci. 2023, 79, 3312–3325. [Google Scholar] [CrossRef]
- Sun, J.S.; Xiao, S.K.; Carlson, J.R. The diverse small proteins called odorant-binding proteins. Open Biol. 2018, 8, 180208. [Google Scholar] [CrossRef]
- Yang, R.; Zhou, J.; Hao, J.; Zhang, T.; Jiang, Y.; Liu, W.; Wang, Y. Olfactory binding proteins: A review across the Insecta. Front. Zool. 2025, 22, 23. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of pine monoterpenes to mountain pine beetle. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef]
- Pu, J.; Chung, H. New and emerging mechanisms of insecticide resistance. Curr. Opin. Insect Sci. 2024, 63, 101184. [Google Scholar] [CrossRef]
- Ingham, V.A.; Anthousi, A.; Douris, V.; Harding, N.J.; Lycett, G.; Morris, M.; Vontas, J.; Ranson, H. A sensory appendage protein protects malaria vectors from pyrethroids. Nature 2020, 577, 376–380. [Google Scholar] [CrossRef]
- Shen, R.X.; Wang, Y.T.; Wu, J.H.; Zhang, N.; Zhang, H.D.; Xing, D.; Chen, Y.; Li, C.X.; Zhao, T.Y. Deltamethrin interacts with Culex quinquefasciatus odorant-binding protein: A novel potential resistance mechanism. Parasites Vectors 2022, 15, 9. [Google Scholar] [CrossRef]
- Zhang, J.J.; Mao, K.K.; Ren, Z.J.; Jin, R.H.; Zhang, Y.H.; Cai, T.W.; He, S.; Li, J.H.; Wan, H. Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens. Int. J. Biol. Macromol. 2022, 209, 1352–1358. [Google Scholar] [CrossRef]
- Chapman, R.F. Contact chemoreception in feeding by phytophagous insects. Annu. Rev. Entomol. 2003, 48, 455–484. [Google Scholar] [CrossRef] [PubMed]
- Jermy, T.; Szentesi, A. Evolutionary aspects of host plant specialisation: A study on bruchids (Coleoptera: Bruchidae). Oikos 2003, 101, 196–204. [Google Scholar] [CrossRef]
- Jacquin-Joly, E.; Merlin, C. Insect olfactory receptors: Contributions of molecular biology to chemical ecology. J. Chem. Ecol. 2004, 30, 2359–2397. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Rihani, K.; Ferveur, J.F.; Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef]
- Visser, J.H.; Ave, D.A. General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 1978, 24, 738–749. [Google Scholar] [CrossRef]
- Visser, J.H.; Van Straten, S.; Maarse, H. Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J. Chem. Ecol. 1979, 5, 13–25. [Google Scholar] [CrossRef]
- Hitchner, E.M.; Kuhar, T.P.; Dickens, J.C.; Youngman, R.R.; Schultz, P.B.; Pfeiffer, D.G. Host plant choice experiments of Colorado potato beetle (Coleoptera: Chrysomelidae) in Virginia. J. Econ. Entomol. 2008, 101, 859–865. [Google Scholar] [CrossRef]
- Biessmann, H.; Andronopoulou, E.; Biessmann, M.R.; Douris, V.; Dimitratos, S.D.; Eliopoulos, E.; Guerin, P.M.; Iatrou, K.; Justice, R.W.; Krober, T.; et al. The Anopheles gambiae odorant-binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS ONE 2010, 5, e9471. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L. Electroantennographic activity of 21 aliphatic compounds that bind well to a locust odorant-binding protein. Arch. Insect Biochem. Physiol. 2022, 110, e21911. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Q.; Wei, H.S.; Li, Z.; Liu, X.X. The odorant-binding protein 1 mediates the foraging behavior of Grapholita molesta larvae. J. Agric. Food Chem. 2023, 72, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.T.; Peng, Z.; Huang, L.; Zhao, S.G.; Liu, M.M. Expression profile and ligand screening of a putative odorant-binding protein, AcerOBP6, from the Asian honeybee. Insects 2021, 12, 955. [Google Scholar] [CrossRef] [PubMed]
- Dickens, J.C. Sexual maturation and temporal variation of neural responses in adult Colorado potato beetles to volatiles emitted by potato plants. J. Chem. Ecol. 2000, 26, 1265–1279. [Google Scholar] [CrossRef]
- Dickens, J.C. Behavioural responses of larvae of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), to host plant volatile blends attractive to adults. Agric. For. Entomol. 2002, 4, 309–314. [Google Scholar] [CrossRef]
- Hammock, J.A.; Vinyard, B.; Dickens, J.C. Response to host plant odors and aggregation pheromone by larvae of the Colorado potato beetle on a servosphere. Arthropod-Plant Interact. 2007, 1, 27–35. [Google Scholar] [CrossRef]
- Qiao, H.; He, X.; Schymura, D.; Ban, L.; Field, L.; Dani, F.; Michelucci, E.; Caputo, B.; della Torre, A.; Iatrou, K.; et al. Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell. Mol. Life Sci. 2011, 68, 1799–1813. [Google Scholar] [CrossRef]
- Schultze, A.; Pregitzer, P.; Walter, M.; Woods, D.; Marinotti, O.; Breer, H.; Krieger, J. The co-expression pattern of odorant-binding proteins and olfactory receptors identifies distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. PLoS ONE 2013, 8, e69412. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L.; Cao, D.; Walker, W.B.; Zhang, Y.; Wang, G. Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis. Front. Ecol. Evol. 2015, 3, 60. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Li, X.; Zhang, Y.; Cheng, D.; Guo, W.; Tursun, A. Sequence analysis and gene expression profiling of odorant-binding proteins in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Acta Entomol. Sin. 2019, 62, 428–441. [Google Scholar] [CrossRef]
- Pélissié, B.; Chen, Y.H.; Cohen, Z.P.; Crossley, M.S.; Hawthorne, D.J.; Izzo, V.; Schoville, S.D. Genome resequencing reveals rapid, repeated evolution in the Colorado potato beetle. Mol. Biol. Evol. 2022, 39, msac016. [Google Scholar] [CrossRef]
- Wilhelm, L.; Wang, Y.; Xu, S. Gene expression atlas of the Colorado potato beetle (Leptinotarsa decemlineata). Sci. Data 2025, 12, 299. [Google Scholar] [CrossRef]





| Category | Ligand Name | a IC50 (µM) | Ki (µM) | b LogP |
|---|---|---|---|---|
| Potato plant volatiles | Nonanal | 7.29 ± 0.53 | 5.47 | 3.30 |
| (Z)-3-Hexenyl-butyrate | 23.99 ± 2.05 | 18.01 | 2.70 | |
| L-Linalool | 48.26 ± 1.77 | 36.23 | 2.70 | |
| Methyl salicylate | 396.30 ± 19.97 | 297.54 | 2.50 | |
| (E)-2-Hexenal | 401.40 ± 16.29 | 301.37 | 1.50 | |
| 2-Phenylethanol | 838.50 ± 39.54 | 629.54 | 1.36 | |
| (E)-3-Hexen-1-ol | - | - | 1.30 | |
| Plant products | D-Glucose | - | - | −2.60 |
| Neonicotinoids | Clothianidin | 94.51 ± 4.24 | 70.96 | 0.70 |
| Imidacloprid | 262.80 ± 15.17 | 197.31 | 0.57 | |
| Organophosphates | Chlorpyrifos | 45.81 ± 3.53 | 34.39 | 4.96 |
| Chlorpyrifos-methyl | 63.67 ± 3.32 | 47.80 | 4.30 | |
| Carbamates | Carbaryl | - | - | 2.36 |
| Pyrethroids | Tetramethrin | 29.07 ± 1.78 | 21.83 | 4.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abendroth, J.A.; Moural, T.W.; Cruse, C.; Hernandez, J.A.; Wolfin, M.S.; Baker, T.C.; Alyokhin, A.; Zhu, F. Pleiotropic Function of Antenna-Specific Odorant-Binding Protein Links Xenobiotic Adaptation and Olfaction in Leptinotarsa decemlineata. Insects 2025, 16, 1259. https://doi.org/10.3390/insects16121259
Abendroth JA, Moural TW, Cruse C, Hernandez JA, Wolfin MS, Baker TC, Alyokhin A, Zhu F. Pleiotropic Function of Antenna-Specific Odorant-Binding Protein Links Xenobiotic Adaptation and Olfaction in Leptinotarsa decemlineata. Insects. 2025; 16(12):1259. https://doi.org/10.3390/insects16121259
Chicago/Turabian StyleAbendroth, James A., Timothy W. Moural, Casey Cruse, Jonathan A. Hernandez, Michael S. Wolfin, Thomas Charles Baker, Andrei Alyokhin, and Fang Zhu. 2025. "Pleiotropic Function of Antenna-Specific Odorant-Binding Protein Links Xenobiotic Adaptation and Olfaction in Leptinotarsa decemlineata" Insects 16, no. 12: 1259. https://doi.org/10.3390/insects16121259
APA StyleAbendroth, J. A., Moural, T. W., Cruse, C., Hernandez, J. A., Wolfin, M. S., Baker, T. C., Alyokhin, A., & Zhu, F. (2025). Pleiotropic Function of Antenna-Specific Odorant-Binding Protein Links Xenobiotic Adaptation and Olfaction in Leptinotarsa decemlineata. Insects, 16(12), 1259. https://doi.org/10.3390/insects16121259

