Toxicity Profiling Validates Trajectory Modeling for Identifying Sogatella furcifera Migration Sources in Southern China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Parameters for Trajectory Simulation
- (1)
- Flight direction: Due to their small body size, migratory directions of S. furcifera are predominantly wind-borne, with individuals transported downwind [15].
- (2)
- Takeoff time: Migration takeoff in rice planthoppers occurs predominantly at crepuscular hours, with peak activity at dusk around 19:00 Beijing Time, corresponding to local sunset [43].
- (3)
- (4)
- Migration duration and landing time: Rice planthoppers are obligate one-way migrants whose journeys are typically completed within 24 h of takeoff, though landing may occur at any point during this period. Their flight is constrained by a lower temperature threshold of 16.5 °C [6,44], resulting in potential landing times between 20:00 on the departure day and 19:00 the following day.
2.3. Toxicity Testing
2.3.1. Insect Sources
2.3.2. Insecticides
2.3.3. Insecticide Toxicity Assay
2.4. Identification of Valid Source Areas
2.5. Statistical Analysis
3. Results
3.1. Early-Season Population Dynamics of S. furcifera in HN Light Traps
3.2. Backward Trajectory Simulation
3.3. Toxicity Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LC50 | Lethal Concentration 50 |
| HN | Hunan province |
| GX | Guangxi province |
| GD | Guangdong province |
| HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
| NOAA | National Oceanic and Atmospheric Administration |
| GDAS | Global Data Assimilation System |
References
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
- Ma, C.; Wang, B.; Wang, X.; Wang, X.; Lin, Q.; Zhang, W.; Yang, X.; Baaren, J.V.; Bebber, D.P.; Eigenbrode, S.D.; et al. Crop pest responses to global changes in climate and land management. Nat. Rev. Earth Environ. 2025, 6, 264–283. [Google Scholar] [CrossRef]
- Hu, G.; Gao, B.; Feng, H.; Jiang, X.; Zhai, B.; Wu, K. Insect migration: Individual behaviour, population dynamics and ecological consequences. Bull. Natl. Nat. Sci. Found. China 2020, 34, 456–463. [Google Scholar]
- Zhu, J.; Chen, X.; Liu, J.; Jiang, Y.; Chen, F.; Lu, J.; Chen, H.; Zhai, B.; Reynolds, D.R.; Chapman, J.W.; et al. A cold high-pressure system over North China hinders the southward migration of Mythimna separata in autumn. Mov. Ecol. 2022, 10, 54. [Google Scholar] [CrossRef]
- Lv, H.; Zhai, M.; Zeng, J.; Zhang, Y.; Zhu, F.; Shen, H.; Qiu, K.; Gao, B.; Reynolds, D.R.; Chapman, J.W.; et al. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. Glob. Change Biol. 2023, 29, 2655–2668. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Yang, F.; Zhou, C.; Shen, H.; Wang, B.; Zeng, J.; Reynolds, D.R.; Chapman, J.W.; Hu, G. Climate change is leading to an ecological trap in a migratory insect. Proc. Natl. Acad. Sci. USA 2025, 122, e2422595122. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Zeng, J.; Huang, C.; Zhang, T. Occurrence of, and damage caused by, major migratory pests and techniques for monitoring and forecasting these in China. Chin. J. Appl. Entomol. 2021, 58, 542–551. [Google Scholar]
- Zhang, Z.; Qi, J.; Zhang, Y.; Lin, P.; Zhang, Y. Development of monitoring and forecasting technologies for migratory insect pests and suggestions for their future application. Chin. J. Appl. Entomol. 2021, 58, 530–541. [Google Scholar]
- Yang, X.; Lei, Q.; Long, H.; Long, G.; Yang, H.; Jin, D. SfAp participates in regulating wing development in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Acta Entomol. Sin. 2024, 67, 1299–1306. [Google Scholar]
- Wu, Y.; Zhang, G.; Chen, X.; Li, X.; Xiong, K.; Cao, S.; Hu, Y.; Lu, M.; Liu, W.; Tuan, H.A.; et al. The Influence of Sogatella furcifera (Hemiptera: Delphacidae) Migratory Events on the Southern Rice Black-Streaked Dwarf Virus Epidemics. J. Econ. Entomol. 2017, 110, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Ai, S.; Luo, C.; Yao, X.; Qu, W.; Wang, Y.; Zhang, T.; Zhang, G.; Yi, X. Manipulation of host-plant preference by virus-induced changes to its insect vector’s olfactory system. Curr. Biol. 2025, 35, 3587–3600. [Google Scholar] [CrossRef] [PubMed]
- Otuka, A. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front. Microbiol. 2013, 4, 309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Y.; Li, X.; Hu, G.; Lu, M.; Zhong, L.; Duan, D.; Zhai, B. Annual Fluctuations of Early Immigrant Populations of Sogatella furcifera (Hemiptera: Delphacidae) in Jiangxi Province, China. J. Econ. Entomol. 2016, 109, 1636–1645. [Google Scholar] [CrossRef]
- Hu, G.; Lu, M.; Tuan, H.A.; Liu, W.; Xie, M.; McInerney, C.E.; Zhai, B. Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bull. Entomol. Res. 2017, 107, 369–381. [Google Scholar] [CrossRef]
- Ma, M.; Wu, Y.; Peng, Z.; Zhao, X.; Zhang, Y.; Liao, G.; Zhai, B. Migration Analysis of Sogatella furcifera (Hemiptera: Delphacidae) in the Northeastern Hunan Province in June. Environ. Entomol. 2017, 46, 757–765. [Google Scholar] [CrossRef]
- Hu, C.; Fu, X.; Wu, K. Seasonal migration of white-backed planthopper Sogatella furcifera Horváth (Hemiptera: Delphacidae) over the Bohai Sea in northern China. J. Asia-Pac. Entomol. 2017, 20, 1358–1363. [Google Scholar] [CrossRef]
- Wu, Q.; Westbrook, J.K.; Hu, G.; Lu, M.; Liu, W.; Sword, G.A.; Zhai, B. Multiscale analyses on a massive immigration process of Sogatella furcifera (Horváth) in south-central China: Influences of synoptic-scale meteorological conditions and topography. Int. J. Biometeorol. 2018, 62, 1389–1406. [Google Scholar] [CrossRef]
- Yang, N.; Dong, Z.; Chen, A.; Yin, Y.; Li, X.; Chu, D. Migration of Sogatella furcifera between the Greater Mekong Subregion and northern China revealed by mtDNA and SNP. BMC Evol. Biol. 2020, 20, 154. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, S.; Jiang, Z.; Chen, A.; Ma, M.; Zhang, G.; Zhai, B.; Li, C. Immigration Pathways of White-Backed Planthopper in the Confluence Area of the Two Monsoon Systems. J. Econ. Entomol. 2022, 115, 1480–1489. [Google Scholar] [CrossRef]
- Chowdhury, S.; Fuller, R.A.; Dingle, H.; Chapman, J.W.; Zalucki, M.P. Migration in butterflies: A global overview. Biol. Rev. Camb. Philos. Soc. 2021, 96, 1462–1483. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wong, H.; Woo, W. Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Acta Phytophylacila Sin. 1964, 3, 101–110. [Google Scholar]
- Geng, J. Application of mark-release-capture in migration. Entomol. Knowledg. 1982, 19, 34–35. [Google Scholar]
- Jia, P. Primary report of the long distance migratory marked moths of Agrotis ipsilon. Plant Prot. 1985, 11, 20. [Google Scholar]
- Jiang, C.; Zhang, X.; Wu, J.; Feng, C.; Ma, L.; Hu, G.; Li, Q. The Source Areas and Migratory Pathways of the Fall Armyworm Spodoptera frugiperda (Smith) in Sichuan Province, China. Insects 2022, 13, 935. [Google Scholar] [CrossRef]
- Wang, X.; Ma, H.; Zhao, Y.; Gao, Y.; Wu, K. Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia. Insects 2024, 15, 321. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, G.; Westbrook, J.K.; Sword, G.A.; Zhai, B.P. An Advanced Numerical Trajectory Model Tracks a Corn Earworm Moth Migration Event in Texas, USA. Insects 2018, 9, 115. [Google Scholar] [CrossRef]
- Chapman, J.W.; Reynolds, D.R.; Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 2015, 18, 287–302. [Google Scholar] [CrossRef]
- Huang, J.; Feng, H.; Drake, V.A.; Reynolds, D.R.; Gao, B.; Chen, F.; Zhang, G.; Zhu, J.; Gao, Y.; Zhai, B.; et al. Massive seasonal high-altitude migrations of nocturnal insects above the agricultural plains of East China. Proc. Natl. Acad. Sci. USA 2024, 121, e2317646121. [Google Scholar] [CrossRef]
- Xu, G.; Guo, Y.Y.; Wu, K.M. Analysis of pollens adhering to cotton bollworm moths (Lepidoptera: Noctuidae). Sci. Agric. Sin. 1999, 32, 63–68. [Google Scholar]
- Dingle, C.; Allcock, J.A.; Ricca, P.M.C.; Leader, P.J.; Hatten, C.E.R.; Merilä, J. Geolocator Tracking and Stable Isotope Analysis Suggest Mixed Migration Strategies in White-Shouldered Starlings (Sturnia sinensis). Ecol. Evol. 2025, 15, e71151. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chu, D.; Yin, Y.; Zhao, X.; Chen, A.; Khay, S.; Douangboupha, B.; Kyaw, M.M.; Kongchuensin, M.; Ngo, V.V.; et al. Possible Source Populations of the White-backed Planthopper in the Greater Mekong Subregion Revealed by Mitochondrial DNA Analysis. Sci. Rep. 2016, 6, 39167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ding, Y.; Zhou, J.; Sun, K.; Matsukura, K.; Zhang, H.; Chen, L.; Hong, X.; Sun, J. Genetic evidence of transoceanic migration of the small brown planthopper between China and Japan. Pest Manag. Sci. 2022, 78, 2909–2920. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chan, K.N.; Li, X.; Zhao, X.; Chu, D.; Yin, Y.; Liu, Y.; Chen, A. The Genetic Diversity of White-Backed Planthoppers (Sogatella furcifera) between Myanmar and Yunnan Province of China. Genes 2023, 14, 2164. [Google Scholar] [CrossRef]
- Hu, Q.; Zhuo, J.; Fang, G.; Lu, J.; Ye, Y.; Li, D.; Lou, Y.; Zhang, X.; Chen, X.; Wang, S.; et al. The genomic history and global migration of a windborne pest. Sci. Adv. 2024, 10, eadk3852. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z. Mechanisms of Insecticide Resistance and Selectivity. Bull. Natl. Nat. Sci. Found. China 2020, 34, 511–518. [Google Scholar]
- Zhuo, F.; Chen, X.; Xia, Y.; Fu, Q.; Wang, S.; Xu, H.; Hu, F.; Zhang, J. The Occurrence Characteristics of Rice Diseases and Insect Pests and the Integration of Green Control Technology in China from 2013 to 2022. Chin. J. Biol. Control 2024, 40, 1207–1213. [Google Scholar]
- Yang, X.; Li, X.; Cang, X.; Guo, J.; Shen, X.; Wu, K. Influence of seasonal migration on the development of the insecticide resistance of oriental armyworm (Mythimna separata) to λ-cyhalothrin. Pest Manag. Sci. 2022, 78, 1194–1205. [Google Scholar] [CrossRef]
- Li, Z.; Qin, Y.; Jin, R.; Zhang, Y.; Ren, Z.; Cai, T.; Yu, C.; Liu, Y.; Cai, Y.; Zeng, Q.; et al. Insecticide Resistance Monitoring in Field Populations of the Whitebacked Planthopper Sogatella furcifera (Horvath) in China, 2019–2020. Insects 2021, 12, 1078. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.; Zeng, B.; Zhang, W.; Chen, X.; Feng, Z.; Yu, H.; Gao, C.; Wu, S. The evolution of insecticide resistance in the white backed planthopper Sogatella furcifera (Horvath) of China in the period 2014–2022. Crop Prot. 2023, 172, 106312. [Google Scholar] [CrossRef]
- Otuka, A.; Huang, S.; Sanada-Morimura, S.; Matsumura, M. Migration analysis of Nilaparvata lugens (Hemiptera: Delphacidae) from the Philippines to Taiwan under typhoon-induced windy conditions. Appl. Entomol. Zool. 2012, 47, 263–271. [Google Scholar] [CrossRef]
- Huestis, D.L.; Dao, A.; Diallo, M.; Sanogo, Z.L.; Samake, D.; Yaro, A.S.; Ousman, Y.; Linton, Y.M.; Krishna, A.; Veru, L.; et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 2019, 574, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Deng, W. A general survey on seasonal migrations of Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath) (Homoptera: Delphacidae) by means of airplane collections. Acta Phytophylacila Sin. 1981, 8, 73–81. [Google Scholar]
- Wu, Q.; Hu, G.; Tuan, H.A.; Chen, X.; Lu, M.; Zhai, B.; Chapman, J.W. Migration patterns and winter population dynamics of rice planthoppers in Indochina: New perspectives from field surveys and atmospheric trajectories. Agric. For. Meteorol. 2019, 265, 99–109. [Google Scholar] [CrossRef]
- Chen, H.; Chang, X.L.; Wang, Y.P.; Lu, M.H.; Liu, W.C.; Zhai, B.P.; Hu, G. The Early Northward Migration of the White-Backed Planthopper (Sogatella furcifera) is Often Hindered by Heavy Precipitation in Southern China during the Preflood Season in May and June. Insects 2019, 10, 158. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, G.; Lu, M.; Wang, B.; Zhu, X.; Su, F.; Zhang, Z.; Zhai, B. Mesoscale source areas and landing mechanisms of the early immigrant white-backed planthopper Sogatella furcifera (Horváth) in Hunan Province, China. Acta Ecol. Sin. 2015, 35, 7397–7417. [Google Scholar] [CrossRef]
- Chapman, J.W.; Nesbit, R.L.; Burgin, L.E.; Reynolds, D.R.; Smith, A.D.; Middleton, D.R.; Hill, J.K. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 2010, 327, 682–685. [Google Scholar] [CrossRef]
- Mao, K.; Ren, Z.; Li, W.; Liu, C.; Xu, P.; He, S.; Li, J.; Wan, H. An insecticide resistance diagnostic kit for whitebacked planthopper Sogatella furcifera (Horvath). J. Pest Sci. 2021, 94, 531–540. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, B.; Zhang, L.; Xiao, Y.; Liang, P.; Wu, K. Influence of seasonal migration on evolution of insecticide resistance in Plutella xylostella. Insect Sci. 2022, 29, 496–504. [Google Scholar] [CrossRef]


| Site | LC50 (95%CI *) (mg/L) | Slope ± SE | χ2 |
|---|---|---|---|
| Hongjiang (HN) | 29.208 (26.377–32.467) a † | 3.090 ± 0.304 | 0.388 |
| Linli (HN) | 28.659 (26.026–31.459) a | 3.462 ± 0.318 | 0.913 |
| Longshan (HN) | 32.067 (28.960–35.801) a | 3.092 ± 0.306 | 0.067 |
| Hanshou (HN) | 27.042 (24.511–29.677) a | 3.471 ± 0.322 | 1.554 |
| Zhijiang (HN) | 27.009 (24.437–29.685) a | 3.401 ± 0.319 | 0.587 |
| Dongan (HN) | 43.545 (39.446–48.026) b | 3.386 ± 0.313 | 4.131 |
| Shuangfeng (HN) | 41.903 (37.682–46.424) b | 3.073 ± 0.302 | 0.588 |
| Ningxiang (HN) | 43.690 (39.669–48.100) b | 3.404 ± 0.314 | 2.999 |
| Linxiang (HN) | 42.511 (38.605–46.741) b | 3.701 ± 0.326 | 2.887 |
| Xiangyin (HN) | 40.737 (36.703–45.029) b | 3.157 ± 0.306 | 0.937 |
| Qidong (HN) | 41.588 (37.071–46.449) b | 2.805 ± 0.293 | 0.352 |
| Daoxian (HN) | 55.945 (53.516–58.417) c | 7.407 ± 0.696 | 1.071 |
| Youxian (HN) | 56.131 (53.789–58.522) c | 7.764 ± 0.711 | 0.945 |
| Guiyang (HN) | 54.250 (52.106–56.389) c | 8.567 ± 0.755 | 2.569 |
| Yizhang (HN) | 53.910 (51.502–56.283) c | 7.427 ± 0.698 | 0.218 |
| Quanzhou (GX) | 18.512 (16.894–20.305) d | 3.572 ± 0.322 | 0.934 |
| Yongfu (GX) | 21.341 (19.513–23.373) d | 3.667 ± 0.325 | 1.273 |
| Longzhou (GX) | 28.091 (25.568–30.751) a | 3.600 ± 0.323 | 1.74 |
| Jinchengjiang (GX) | 31.235 (28.777–33.907) a | 4.167 ± 0.351 | 1.003 |
| Liujiang (GX) | 42.548 (38.525–46.867) b | 3.308 ± 0.31 | 1.041 |
| Xingbin (GX) | 43.401 (39.246–47.924) b | 3.221 ± 0.308 | 0.098 |
| Fangchenggang (GX) | 47.518 (41.579–54.253) bc | 2.470 ± 0.221 | 1.194 |
| Hepu (GX) | 47.063 (40.847–54.143) bc | 2.297 ± 0.214 | 0.389 |
| Bobai (GX) | 46.959 (40.446–54.429) bc | 2.331 ± 0.216 | 0.224 |
| Zhaoping (GX) | 58.090 (55.517–60.802) c | 7.051 ± 0.676 | 1.325 |
| Babu (GX) | 57.292 (54.863–59.817) c | 7.502 ± 0.697 | 0.772 |
| Site | LC50 (95%CI) (mg/L) | Slope ± SE | χ2 |
|---|---|---|---|
| Hongjiang (HN) | 0.906 (0.729–1.096) a ‡ | 3.09 ± 0.304 | 0.388 |
| Linli (HN) | 1.002 (0.922–1.087) a | 3.462 ± 0.318 | 0.913 |
| Longshan (HN) | 0.922 (0.851–0.996) a | 3.092 ± 0.306 | 0.067 |
| Hanshou (HN) | 0.975 (0.887–1.067) a | 3.471 ± 0.322 | 1.554 |
| Zhijiang (HN) | 1.083 (0.991–1.181) a | 3.401 ± 0.319 | 0.587 |
| Dongan (HN) | 2.622 (2.379–2.886) b | 3.386 ± 0.313 | 4.131 |
| Shuangfeng (HN) | 2.614 (2.389–2.858) b | 3.073 ± 0.302 | 0.588 |
| Ningxiang (HN) | 2.815 (2.598–3.056) b | 3.404 ± 0.314 | 2.999 |
| Linxiang (HN) | 2.602 (2.393–2.828) b | 3.701 ± 0.326 | 2.887 |
| Xiangyin (HN) | 2.767 (2.546–3.007) b | 3.157 ± 0.306 | 0.937 |
| Qidong (HN) | 2.392 (1.948–2.897) b | 2.805 ± 0.293 | 0.352 |
| Daoxian (HN) | 3.899 (3.566–4.249) c | 7.407 ± 0.696 | 1.071 |
| Youxian (HN) | 3.536 (3.236–3.842) c | 7.764 ± 0.711 | 0.945 |
| Guiyang (HN) | 4.209 (3.834–4.613) c | 8.567 ± 0.755 | 2.569 |
| Yizhang (HN) | 4.071 (3.721–4.443) c | 7.427 ± 0.698 | 0.218 |
| Quanzhou (GX) | 0.648 (0.591–0.709) d | 3.572 ± 0.322 | 0.934 |
| Yongfu (GX) | 0.649 (0.597–0.705) d | 3.667 ± 0.325 | 1.273 |
| Longzhou (GX) | 1.100 (0.983–1.218) a | 3.600 ± 0.323 | 1.740 |
| Jinchengjiang (GX) | 1.105 (0.988–1.225) a | 4.167 ± 0.351 | 1.003 |
| Liujiang (GX) | 2.623 (2.382–2.872) b | 3.308 ± 0.310 | 1.041 |
| Xingbin (GX) | 2.853 (2.318–3.476) b | 3.221 ± 0.308 | 0.098 |
| Fangchenggang (GX) | 3.297 (2.679–4.061) bc | 2.470 ± 0.221 | 1.194 |
| Hepu (GX) | 3.316 (2.804–3.909) bc | 2.297 ± 0.214 | 0.389 |
| Bobai (GX) | 3.260 (2.751–3.847) bc | 2.331 ± 0.216 | 0.224 |
| Zhaoping (GX) | 4.140 (3.778–4.526) c | 7.051 ± 0.676 | 1.325 |
| Babu (GX) | 3.726 (3.376–4.086) c | 7.502 ± 0.697 | 0.772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Quan, P.; Wu, Y.; Li, C.; Ma, M. Toxicity Profiling Validates Trajectory Modeling for Identifying Sogatella furcifera Migration Sources in Southern China. Insects 2025, 16, 1129. https://doi.org/10.3390/insects16111129
Zhu J, Quan P, Wu Y, Li C, Ma M. Toxicity Profiling Validates Trajectory Modeling for Identifying Sogatella furcifera Migration Sources in Southern China. Insects. 2025; 16(11):1129. https://doi.org/10.3390/insects16111129
Chicago/Turabian StyleZhu, Jian, Pengqi Quan, Yan Wu, Chao Li, and Mingyong Ma. 2025. "Toxicity Profiling Validates Trajectory Modeling for Identifying Sogatella furcifera Migration Sources in Southern China" Insects 16, no. 11: 1129. https://doi.org/10.3390/insects16111129
APA StyleZhu, J., Quan, P., Wu, Y., Li, C., & Ma, M. (2025). Toxicity Profiling Validates Trajectory Modeling for Identifying Sogatella furcifera Migration Sources in Southern China. Insects, 16(11), 1129. https://doi.org/10.3390/insects16111129

