Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Mosquito Sampling Strategy
2.3. Mosquito Identification and Phylogenetic Analysis
2.4. Statistical Analysis of Habitat Differences in Larval Abundance
2.5. Mosquito Control Interventions
2.6. Evaluation of Control Effectiveness
3. Results
3.1. Larvae Collections and Habitat Differences
3.2. Barcoding and Phylogenetic Analysis
3.3. Adult Collections
3.4. Control Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yee, D.A.; Dean Bermond, C.; Reyes-Torres, L.J.; Fijman, N.S.; Scavo, N.A.; Nelsen, J.; Yee, S.H. Robust Network Stability of Mosquitoes and Human Pathogens of Medical Importance. Parasites Vectors 2022, 15, 216. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The Emergence of Arthropod-Borne Viral Diseases: A Global Prospective on Dengue, Chikungunya and Zika Fevers. Acta Trop. 2017, 166, 155–163. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.M.; Weaver, S.C. Effects of Climate Change and Human Activities on Vector-Borne Diseases. Nat. Rev. Microbiol. 2024, 22, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Burkett-Cadena, N.D.; Vittor, A.Y. Deforestation and Vector-Borne Disease: Forest Conversion Favors Important Mosquito Vectors of Human Pathogens. Basic Appl. Ecol. 2018, 26, 101–110. [Google Scholar] [CrossRef]
- Brugueras, S.; Fernández-Martínez, B.; Martínez-de la Puente, J.; Figuerola, J.; Porro, T.M.; Rius, C.; Larrauri, A.; Gómez-Barroso, D. Environmental Drivers, Climate Change and Emergent Diseases Transmitted by Mosquitoes and Their Vectors in Southern Europe: A Systematic Review. Environ. Res. 2020, 191. [Google Scholar] [CrossRef]
- Bruno, L.; Nappo, M.A.; Frontoso, R.; Perrotta, M.G.; Di Lecce, R.; Guarnieri, C.; Ferrari, L.; Corradi, A. West Nile Virus (WNV): One-Health and Eco-Health Global Risks. Vet. Sci. 2025, 12, 288. [Google Scholar] [CrossRef]
- Constant, O.; Gil, P.; Barthelemy, J.; Bolloré, K.; Foulongne, V.; Desmetz, C.; Leblond, A.; Desjardins, I.; Pradier, S.; Joulié, A.; et al. One Health Surveillance of West Nile and Usutu Viruses: A Repeated Cross-Sectional Study Exploring Seroprevalence and Endemicity in Southern France, 2016 to 2020. Eurosurveillance 2022, 27, 110038. [Google Scholar] [CrossRef]
- Kramer, L.D.; Ciota, A.T.; Marm Kilpatrick, A. Introduction, Spread, and Establishment of West Nile Virus in the Americas. J. Med. Entomol. 2019, 56, 1448–1455. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. J. Trop. Med. Hyg. 1940, s1-20, 471–492. [Google Scholar] [CrossRef]
- Carrasco, L.; Utrilla, M.J.; Fuentes-Romero, B.; Fernandez-Novo, A.; Martin-Maldonado, B. West Nile Virus: An Update Focusing on Southern Europe. Microorganisms 2024, 12, 2623. [Google Scholar] [CrossRef]
- Figuerola, J.; Jiménez-Clavero, M.Á.; Ruíz-López, M.J.; Llorente, F.; Ruiz, S.; Hoefer, A.; Aguilera-Sepúlveda, P.; Jiménez-Peñuela, J.; García-Ruiz, O.; Herrero, L.; et al. A One Health View of the West Nile Virus Outbreak in Andalusia (Spain) in 2020. Emerg. Microbes Infect. 2022, 11, 2570–2578. [Google Scholar] [CrossRef]
- Ferraguti, M.; LA Puente, J.M.D.; Soriguer, R.; Llorente, F.; Jiménez-Clavero, M.A.; Figuerola, J. West Nile Virus-Neutralizing Antibodies in Wild Birds from Southern Spain. Epidemiol. Infect. 2016, 144, 1907–1911. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Jaén-Téllez, J.A.; Napp, S.; Arenas-Montes, A.; Fernández-Morente, M.; Fernández-Molera, V.; Arenas, A. West Nile Fever Outbreak in Horses and Humans, Spain, 2010. Emerg. Infect. Dis. 2011, 17, 2397–2399. [Google Scholar] [CrossRef]
- Rodríguez-Alarcón, L.G.S.M.; Fernández-Martínez, B.; Moros, M.J.S.; Vázquez, A.; Pachés, P.J.; Villacieros, E.G.; Martín, M.B.G.; Borras, J.F.; Lorusso, N.; Aceitero, J.M.R.; et al. Unprecedented Increase of West Nile Virus Neuroinvasive Disease, Spain, Summer 2020. Euro Surveill. 2021, 26, 2002010. [Google Scholar] [CrossRef]
- Centro Nacional de Epidemiología. Instituto de Salud Carlos III. CIBERESP. Informe Epidemiológico Sobre la Situación de la Fiebre del Nilo Occidental en España. Madrid, 2024. Available online: http://cne.isciii.es/documents/d/cne/informe_renave_fno-2024 (accessed on 27 February 2025).
- Vogels, C.B.F.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J.M. Vector Competence of European Mosquitoes for West Nile Virus. Emerg. Microbes Infect. 2017, 6, e96. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.; Almeida, A.P.G.; Galão, R.P.; Parreira, R.; Piedade, J.; Rodrigues, J.C.; Sousa, C.A.; Novo, M.T. West Nile Virus in Southern Portugal, 2004. Vector-Borne Zoonotic Dis. 2005, 5, 410–413. [Google Scholar] [CrossRef]
- Burgas-Pau, A.; Gardela, J.; Aranda, C.; Verdún, M.; Rivas, R.; Pujol, N.; Figuerola, J.; Busquets, N. Laboratory Evidence on the Vector Competence of European Field-Captured Culex theileri for Circulating West Nile Virus Lineages 1 and 2. Parasites Vectors 2025, 18, 132. [Google Scholar] [CrossRef]
- Linthout, C.; Martins, A.D.; de Wit, M.; Delecroix, C.; Abbo, S.R.; Pijlman, G.P.; Koenraadt, C.J.M. The Potential Role of the Asian Bush Mosquito Aedes japonicus as Spillover Vector for West Nile Virus in the Netherlands. Parasites Vectors 2024, 17, 262. [Google Scholar] [CrossRef]
- Wöhnke, E.; Vasic, A.; Raileanu, C.; Holicki, C.M.; Tews, B.A.; Silaghi, C. Comparison of Vector Competence of Aedes vexans Green River and Culex pipiens Biotype Pipiens for West Nile Virus Lineages 1 and 2. Zoonoses Public Health 2020, 67, 416–424. [Google Scholar] [CrossRef] [PubMed]
- González, M.A.; Chaskopoulou, A.; Georgiou, L.; Frontera, E.; Cáceres, F.; Masia, M.; Gutiérrez-Climente, R.; Ambert, G.L.; Osório, H.; Seixas, G.; et al. Mosquito Management Strategies in European Rice Fields: Environmental and Public Health Perspectives. J. Environ. Manag. 2024, 370, 122534. [Google Scholar] [CrossRef]
- Ferraguti, M.; Heesterbeek, H.; Martínez-de la Puente, J.; Jiménez-Clavero, M.Á.; Vázquez, A.; Ruiz, S.; Llorente, F.; Roiz, D.; Vernooij, H.; Soriguer, R.; et al. The Role of Different Culex Mosquito Species in the Transmission of West Nile Virus and Avian Malaria Parasites in Mediterranean Areas. Transbound. Emerg. Dis. 2021, 68, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Fesce, E.; Ferraguti, M. New Enemies: Contribution of Culex perexiguus in the Transmission Dynamic of West Nile Virus. Pathog. Glob. Health 2025, 119, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Fournet, F.; Jourdain, F.; Bonnet, E.; Degroote, S.; Ridde, V. Effective Surveillance Systems for Vector-Borne Diseases in Urban Settings and Translation of the Data into Action: A Scoping Review Frédéric Simard. Infect. Dis. Poverty 2018, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Zeller, H.; Van Bortel, W. A Review of the Vector Management Methods to Prevent and Control Outbreaks of West Nile Virus Infection and the Challenge for Europe. Parasites Vectors 2014, 7, 323. [Google Scholar] [CrossRef]
- Bonds, J.A.S. Ultra-Low-Volume Space Sprays in Mosquito Control: A Critical Review. Med. Vet. Entomol. 2012, 26, 121–130. [Google Scholar] [CrossRef]
- Programa de Vigilancia y Control Integral de Vectores de La Fiebre Del Nilo Occidental (FNO). 2025. Available online: https://www.juntadeandalucia.es/organismos/saludyconsumo/areas/entornos-saludables/salud-ambiental/paginas/programa-vigilancia-2025.html (accessed on 15 September 2025).
- Goiri, F.; González, M.A.; Cevidanes, A.; Barandika, J.F.; García-Peréz, A.L. Mosquitoes in Urban Green Spaces and Cemeteries in Northern Spain. Parasites Vectors 2024, 17, 168. [Google Scholar] [CrossRef]
- González, M.A.; Goiri, F.; Cevidanes, A.; Hernández-Triana, L.M.; Barandika, J.F.; García-Pérez, A.L. Mosquito Community Composition in Two Major Stopover Aquatic Ecosystems Used by Migratory Birds in Northern Spain. Med. Vet. Entomol. 2023, 37, 616–629. [Google Scholar] [CrossRef]
- Becker, N.; Petrić, D.; Boase, C.; Lane, J.; Zgomba, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control, 1st ed.; Springer Nature: Durham, NC, USA, 2003. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.6. 2022. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 15 September 2025).
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- R Core Teeam. Version 4.5.1. Statistical Computing, Vienna. A Language and Environment for Statistical Computing. 2024. Available online: https://www.R-project.org/ (accessed on 15 September 2025).
- Ferraguti, M.; Martínez-De La Puente, J.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Effects of Landscape Anthropization on Mosquito Community Composition and Abundance. Sci. Rep. 2016, 6, 29002. [Google Scholar] [CrossRef] [PubMed]
- Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands. PLoS ONE 2015, 10, e0128112. [Google Scholar] [CrossRef] [PubMed]
- Harbach, R. The Mosquitoes of the Subgenus Culex in Southwestern Asia and Egypt (Diptera: Culicidae). Cont. Am. Entomol. Int. 1988, 24, 1. [Google Scholar]
- Sofizadeh, A.; Moosa-Kazemi, S.H.; Dehghan, H. Larval Habitats Characteristics of Mosquitoes (Diptera: Culicidae) in North-East of Iran. J. Arthropod. Borne. Dis. 2017, 11, 211. [Google Scholar] [PubMed]
- Mixão, V.; Bravo Barriga, D.; Parreira, R.; Novo, M.T.; Sousa, C.A.; Frontera, E.; Venter, M.; Braack, L.; Almeida, A.P.G. Comparative Morphological and Molecular Analysis Confirms the Presence of the West Nile Virus Mosquito Vector, Culex univittatus, in the Iberian Peninsula. Parasites Vectors. 2016, 9, 601. [Google Scholar] [CrossRef]
- Bravo-Barriga, D.; de Almeida, A.P.G.; Delacour-Estrella, S.; Peña, R.E.; Lucientes, J.; Sánchez-Murillo, J.M.; Frontera, E. Mosquito Fauna in Extremadura (Western Spain): Updated Catalog with New Records, Distribution Maps, and Medical Relevance. J. Vector Ecol. 2021, 46, 70–82. [Google Scholar] [CrossRef]
- Brühl, C.A.; Després, L.; Frör, O.; Patil, C.D.; Poulin, B.; Tetreau, G.; Allgeier, S. Environmental and Socioeconomic Effects of Mosquito Control in Europe Using the Biocide Bacillus thuringiensis Subsp. Israelensis (Bti). Sci. Total Environ. 2020, 724, 137800. [Google Scholar] [CrossRef]
- Rique, H.L.; Menezes, H.S.G.; Melo-Santos, M.A.V.; Silva-Filha, M.H.N.L. Evaluation of a Long-Lasting Microbial Larvicide against Culex quinquefasciatus and Aedes aegypti under Laboratory and a Semi-Field Trial. Parasites Vectors 2024, 17, 391. [Google Scholar] [CrossRef]
- Derua, Y.A.; Tungu, P.K.; Malima, R.C.; Mwingira, V.; Kimambo, A.G.; Batengana, B.M.; Machafuko, P.; Sambu, E.Z.; Mgaya, Y.D.; Kisinza, W.N. Laboratory and Semi-Field Evaluation of the Efficacy of Bacillus thuringiensis Var. Israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for Control of Mosquito Vectors in Northeastern Tanzania. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100089. [Google Scholar] [CrossRef]
- Becker, N.; Zgomba, M.; Ludwig, M.; Petric, D.; Rettich, F. Factors Influencing the Activity of Bacillus thuringiensis Var. Israelensis Treatments. J. Am. Mosq. Control Assoc. 1992, 8, 285–289. [Google Scholar]
- Kirrmann, T.; Smith, T.A.; Modespacher, B.; Müller, P. Optimising the Application Frequency of VectoMax® FG for the Control of Ae. albopictus and Culex spp. in the Urban Environment: Findings from a Randomised Controlled Trial. Parasites Vectors, 2025; preprint. [Google Scholar] [CrossRef]
- Virgillito, C.; Manica, M.; Marini, G.; Rosà, R.; Torre, A.D.; Martini, S.; Drago, A.; Baseggio, A.; Caputo, B. Evaluation of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus combination against Culex pipiens in highly vegetated ditches. J. Am. Mosq. Control Assoc. 2022, 38, 40–45. [Google Scholar] [CrossRef]
- Dawson, D.; Salice, C.J.; Subbiah, S. The Efficacy of the Bacillus thuringiensis israelensis Larvicide against Culex tarsalis in Municipal Wastewater and Water from Natural Wetlands. J. Am. Mosq. Control Assoc. 2019, 35, 97–106. [Google Scholar] [CrossRef]
- Pichler, V.; Caputo, B.; Valadas, V.; Micocci, M.; Horvath, C.; Virgillito, C.; Akiner, M.; Balatsos, G.; Bender, C.; Besnard, G.; et al. Geographic Distribution of the V1016G Knockdown Resistance Mutation in Aedes albopictus: A Warning Bell for Europe. Parasites Vectors 2022, 15, 280. [Google Scholar] [CrossRef]
- Vereecken, S.; Vanslembrouck, A.; Kramer, I.M.; Müller, R. Phenotypic Insecticide Resistance Status of the Culex pipiens Complex: A European Perspective. Parasites Vectors 2022, 15, 423. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]





| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, M.A.; Barceló, C.; Muriel, R.; Rodríguez, J.J.; Rodríguez, E.; Figuerola, J.; Bravo-Barriga, D. Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain. Insects 2025, 16, 1100. https://doi.org/10.3390/insects16111100
González MA, Barceló C, Muriel R, Rodríguez JJ, Rodríguez E, Figuerola J, Bravo-Barriga D. Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain. Insects. 2025; 16(11):1100. https://doi.org/10.3390/insects16111100
Chicago/Turabian StyleGonzález, Mikel Alexander, Carlos Barceló, Roberto Muriel, Juan Jesús Rodríguez, Eduardo Rodríguez, Jordi Figuerola, and Daniel Bravo-Barriga. 2025. "Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain" Insects 16, no. 11: 1100. https://doi.org/10.3390/insects16111100
APA StyleGonzález, M. A., Barceló, C., Muriel, R., Rodríguez, J. J., Rodríguez, E., Figuerola, J., & Bravo-Barriga, D. (2025). Rapid-Response Vector Surveillance and Emergency Control During the Largest West Nile Virus Outbreak in Southern Spain. Insects, 16(11), 1100. https://doi.org/10.3390/insects16111100
 
         
                                                




 
                        