Artificial Intelligence and Citizen Science as a Tool for Global Mosquito Surveillance: Madagascar Case Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. GLOBE Observer
2.2. Madagascar Observations
2.3. Larvae
2.3.1. Centers for Disease Control and Prevention
2.3.2. University of South Florida
2.3.3. University of Antananarivo
2.4. Imaging
2.5. Artificial Intelligence
3. Results
4. Discussion
4.1. Artificial Intelligence
4.2. Sexing
4.3. Surveillance
4.4. Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | artificial intelligence | 
| CAM | class activation map | 
| CDC CNN | Centers for Disease Control and Prevention Convolutional neural network | 
| GLOBE | Global Learning and Observations to Benefit the Environment | 
| GMOD | Global Mosquito Observations Dashboard | 
| Grad-CAM | gradient-weighted class activation map | 
| L1–L4 | larval instar stages, one to four | 
| MACC | mean average correlation coefficient | 
| NASA | National Aeronautics and Space Administration | 
| UA | University of Antananarivo | 
| USF | University of South Florida | 
| XAI | explainable artificial intelligence | 
| WHO | World Health Organization | 
Appendix A
| Layer | Input Size | Output Size | 
|---|---|---|
| Base CNN blocks | 224, 224, 3 | 7, 7, 1280 | 
| GlobalAveragePooling2D | 7, 7, 1280 | 1280 | 
| dense 1 (Dense) | 1280 | 256 | 
| batchNorm1 (BatchNormalization) | 256 | 256 | 
| dropout 1 (Dropout) | 256 | 256 | 
| dense 2 (Dense) | 256 | 128 | 
| batchNorm2 (BatchNormalization) | 128 | 128 | 
| dropout 2 (Dropout) | 128 | 128 | 
| dense 3 (Dense) | 128 | 64 | 
| batchNorm3 (BatchNormalization) | 64 | 64 | 
| dropout 3 (Dropout) | 64 | 64 | 
| concatenate_1 (Concatenate) | 256, 128, 64 | 448 | 
| dense 4 (Dense) | 448 | 6 | 
| Hyperparameter | Value | 
|---|---|
| Loss | Sparse Categorical Cross-entropy | 
| Optimizer | Adam Optimizer | 
| Batch Size | 16 | 
| Epochs | 600 | 
| Learning-rate | 1 × 10−5 | 
| Layer | Input Size | Output Size | 
|---|---|---|
| Xception Conv blocks | 299, 299, 3 | 7, 7, 512 | 
| global average pooling2d | 7, 7, 512 | 512 | 
| dense 1 (Dense) | 512 | 256 | 
| dropout 1 (Dropout) | 256 | 256 | 
| dense 2 (Dense) | 256 | 128 | 
| dropout 2 (Dropout) | 128 | 128 | 
| dense 3 (Dense) | 128 | 64 | 
| dropout 3 (Dropout) | 64 | 64 | 
| dense 4 (Dense) | 64 | 2 | 
| Hyperparameter | Value | 
|---|---|
| Loss | Binary Cross entropy | 
| Optimizer | Adam Optimizer | 
| Momentum | 0.9 | 
| Epochs | 1100 | 
| Learning-rate | 0.0001 | 
References
- World Health Organization. World Malaria Report 2021; License: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 30 August 2025).
- President’s Malaria Initiative. Measure Malaria: Madagascar—Malaria. n.d. Available online: https://measuremalaria.cpc.unc.edu/countries/madagascar/ (accessed on 7 May 2025).
- United Nations. Population Division Data Portal. Available online: https://population.un.org/dataportal/data/indicators/49/locations/450/start/2025/end/2025/table/pivotbylocation?df=100d9a13-37d8-4cee-8abf-cb2afd555c8f (accessed on 7 May 2025).
- World Health Organization. WHO Initiative to Stop the Spread of Anopheles stephensi in Africa. 2022. Available online: https://www.who.int/publications/i/item/WHO-UCN-GMP-2022.06 (accessed on 7 May 2025).
- Moustapha, L.M.; Sanda, A.-N.H.; Mukhtar, M.M.; Muhammad, A.; Einoi, H.K.; Aliyu, Y.Y.; Adamu, S.; Moudalabi, T.M.; Lawali, I.Y.; Moussa, A.H.D.; et al. First detection and entomological characterisation of invasive malaria vector Anopheles stephensi in sympatry with other vectors in Gayi Southern Niger Republic. Sci. Rep. 2025, 15, 22647. [Google Scholar] [CrossRef]
- de Santi, V.P.; Khaireh, B.A.; Chiniard, T.; Pradines, B.; Taudon, N.; Larréché, S.; Mohamed, A.B.; de Laval, F.; Berger, F.; Gala, F.; et al. Role of Anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg. Infect. Dis. 2021, 27, 1697. [Google Scholar] [CrossRef] [PubMed]
- Emiru, T.; Getachew, D.; Murphy, M.; Sedda, L.; Ejigu, L.A.; Bulto, M.G.; Byrne, I.; Demisse, M.; Abdo, M.; Chali, W.; et al. Evidence for a role of Anopheles stephensi in the spread of drug- and diagnosis-resistant malaria in Africa. Nat. Med. 2023, 29, 3203–3211. [Google Scholar] [CrossRef]
- Tadesse, F.G.; Ashine, T.; Teka, H.; Esayas, E.; Messenger, L.A.; Chali, W.; Meerstein-Kessel, L.; Walker, T.; Behaksra, S.W.; Lanke, K.; et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg. Infect. Dis. 2021, 27, 603–607. [Google Scholar] [CrossRef]
- Balkew, M.; Mumba, P.; Yohannes, G.; Abiy, E.; Getachew, D.; Yared, S.; Worku, A.; Gebresilassie, A.; Tadesse, F.G.; Gadisa, E.; et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar. J. 2021, 20, 263. [Google Scholar] [CrossRef]
- Sinka, M.E.; Pironon, S.; Massey, N.C.; Longbottom, J.; Hemingway, J.; Moyes, C.L.; Willis, K.J. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- Seyfarth, M.; Khaireh, B.A.; Abdi, A.A.; Bouh, S.M.; Faulde, M.K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: Populations established—Malaria emerging. Parasitol. Res. 2019, 118, 725–732. [Google Scholar] [CrossRef]
- Ahn, J.; Sinka, M.; Irish, S.R.; Zohdy, S. Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi. Sci. Rep. 2023, 13, 876. [Google Scholar] [CrossRef]
- World Health Organization. Vector Alert: Anopheles stephensi Invasion and Spread. 2019. Available online: https://www.who.int/news/item/26-08-2019-vector-alert-anopheles-stephensi-invasion-and-spread (accessed on 7 May 2025).
- President’s Malaria Initiative. PMI Technical Guidance for FY 2023. 2023. Available online: https://mesamalaria.org/wp-content/uploads/2025/04/PMI-Guidelines-2023-Operational-Research-PUBLIC_PMI-FY2023-Technical-Guidance_508_031722.pdf (accessed on 7 May 2025).
- Balkew, M.; Mumba, P.; Dengela, D.; Yohannes, G.; Getachew, D.; Yared, S.; Carter, T.E.; Murphy, M.; George, K.; Lopez, K.; et al. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit. Vectors 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- President’s Malaria Initiative. PMI Action Plan to Respond to the Threat of Anopheles stephensi in Africa. 2023. Available online: https://stacks.cdc.gov/view/cdc/132195 (accessed on 7 May 2025).
- Carney, R.M.; Long, A.; Low, R.D.; Zohdy, S.; Palmer, J.R.B.; Elias, P.; Bartumeus, F.; Njoroge, L.; Muniafu, M.; Uelmen, J.; et al. Citizen science as an approach for responding to the threat of Anopheles stephensi in Africa. Citiz. Sci. Theory Pract. 2023, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Carney, R.M.; Mapes, C.; Low, R.D.; Long, A.; Bowser, A.; Durieux, D.; Rivera, K.; Dekramanjian, B.; Bartumeus, F.; Guerrero, D.; et al. Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects 2022, 13, 675. [Google Scholar] [CrossRef]
- Palmer, J.R.; Oltra, A.; Collantes, F.; Delgado, J.A.; Lucientes, J.; Delacour, S.; Bengoa, M.; Eritja, R.; Bartumeus, F. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 2017, 8, 916. [Google Scholar] [CrossRef]
- Nelson, P.V.; Low, R.D.; Kohl, H.; Overoye, D.; Yang, D.; Huang, X.; Chellappan, S.; Azam, F.B.; Carney, R.M.; Falk, M.; et al. GLOBE Observer: A case study in advancing earth system knowledge with AI-powered citizen science. Citiz. Sci. Theory Pract. 2024, 9, 33. [Google Scholar] [CrossRef]
- Low, R.D.; Schwerin, T.G.; Boger, R.A.; Soeffing, C.; Nelson, P.V.; Bartlett, D.; Ingle, P.; Kimura, M.; Clark, A. Building international capacity for citizen scientist engagement in mosquito surveillance and mitigation: The GLOBE Program’s GLOBE Observer Mosquito Habitat Mapper. Insects 2022, 13, 624. [Google Scholar] [CrossRef]
- Rafarasoa, L.S.; Randrianaivo, G.G. Year 2020 surveillance of Aedes albopictus mosquitoes vectors of Zika in urban area. 2020. Available online: https://www.globe.gov/documents/10157/2433430b-66be-43b7-b158-0b214ce5f88b (accessed on 7 May 2025).
- Uelmen, J.A.; Clark, A.; Palmer, J.; Kohler, J.; Van Dyke, L.C.; Low, R.; Mapes, C.; Carney, R.M. Global Mosquito Observations Dashboard (GMOD): Creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes. Int. J. Health Geogr. 2023, 22, 28. [Google Scholar] [CrossRef]
- Martins, R.M.; Espíndola, B.M.; Araujo, P.P.; von Wangenheim, C.G.; de Carvalho Pinto, C.J.; Caminha, G. Development of a deep learning model for the classification of mosquito larvae images. In Brazilian Conference on Intelligent Systems; Naldi, M.C., Bianchi, R.A.C., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2023; Part III; pp. 129–145. [Google Scholar] [CrossRef]
- Benedict, M.Q. Methods in Anopheles Research; Malaria Research and Reference Reagent Resource Center (MR4): Bethesda, MD, USA, 2015; p. 408.
- Andrianjafy, T.M.; Uelmen, J.A.; Rasolofo, R.N.; Ramahazomanana, M.A.; Carney, R.M. Urban larval mosquito surveillance in Antananarivo, Madagascar: Spatiotemporal heterogeneity and associated vector dynamics. in review.
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR. pp. 6105–6114. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proc. AAAI Conf. Artif. Intell. 2017, 31, 4278–4284. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Suman, D.S.; Parashar, B.D.; Prakash, S. Morphological sexual dimorphism in three species of anopheline mosquito larvae. J. Am. Mosq. Control Assoc. 2008, 24, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Rishikesh, N. Chromosome behaviour during spermatogenesis of Anopheles stephensi sensu stricto. Cytologia 1959, 24, 447–458. [Google Scholar] [CrossRef]
- Adie, H.A. Note on the sex of mosquito larvae. Ann. Trop. Med. and Par. 1912, 6, 463–466. [Google Scholar] [CrossRef]
- Gehrisch, K.; Morris, P.J.R.; Carney, R.M. Geometric Morphometric Analyses of Mosquito larvae, with Implications for Surveillance and Control. University of South Florida, Tampa, FL, USA, 2025. In preparation. [Google Scholar]
- Bian, G.; Joshi, D.; Dong, Y.; Lu, P.; Zhou, G.; Pan, X.; Xu, Y.; Dimopoulos, G.; Xi, Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Gantz, V.M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V.M.; Bier, E.; James, A.A. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 2015, 112, E6736–E6743. [Google Scholar] [CrossRef]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef]
- Bouyer, J.; Iyaloo, D.; Baldet, T. Preventing the establishment of invasive exotic mosquitoes. Trends Parasitol. 2025, 41, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Adie, H.A. The sex of the larvæ of mosquitoes and other experimental work. Lancet 1912, 179, 865. [Google Scholar] [CrossRef]
- Cadeddu, M.G.; Laudani, U. Testis maturation in Anopheles atroparvus van Thiel. Boll. Zool. 1974, 41, 39–42. [Google Scholar] [CrossRef]
- Walter Reed Biosystematics Unit. Walter Reed Biosystematics Unit Website. 2021. Available online: https://web.archive.org/web/20250329082247/https://wrbu.si.edu (accessed on 21 February 2025).
- Barik, T.K.; Sahu, B.; Swain, V. A review on Anopheles culicifacies: From bionomics to control with special reference to Indian subcontinent. Acta Trop. 2009, 109, 87–97. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Zohdy, S.; Carney, R.M.; Mosawa, V.R.; Elahee, K.B.; Munglee, N.; Latchooman, N.; Puryag, S.; Bheecarry, A.; Bhoobun, H.; et al. A regional One Health approach to the risk of invasion by Anopheles stephensi in Mauritius. PLoS Negl. Trop. Dis. 2024, 18, e0011827. [Google Scholar] [CrossRef]
- Lehmann, T.; Bamou, R.; Chapman, J.W.; Reynolds, D.R.; Armbruster, P.A.; Dao, A.; Yaro, A.S.; Burkot, T.R.; Linton, Y.M. Urban malaria may be spreading via the wind—here’s why that’s important. Proc. Natl. Acad. Sci. USA 2023, 120, e2301666120. [Google Scholar] [CrossRef]
- Adeogun, A.; Babalola, A.S.; Okoko, O.O.; Oyeniyi, T.; Omotayo, A.; Izekor, R.T.; Adetunji, O.; Olakiigbe, A.; Olagundoye, O.; Adeleke, M.; et al. Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data. Sci. Rep. 2023, 13, 13679. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Threats Map. 2024. Available online: https://apps.who.int/malaria/maps/threats/ (accessed on 19 March 2025).
- Garcia, P.; Diaz, R.E., Jr.; Anderson, C.V.; Andrianjafy, T.M.; de Beer, L.; Edmonds, D.A.; Carney, R.M. Mosquito bite-induced color change in chameleon skin. Herpetol. Rev. 2023, 54, 353–358. [Google Scholar]
- Centers for Disease Control and Prevention. Integrated Mosquito Management. 2024. Available online: https://www.cdc.gov/mosquitoes/php/toolkit/integrated-mosquito-management-1.html (accessed on 11 April 2025).
- Pan American Health Organization. Risk Communication and Community Engagement for Zika Virus Prevention and Control. 2016. Available online: https://www3.paho.org/hq/dmdocuments/2016/2016-risk-com-comunity-engag-zika-preven-cont.pdf (accessed on 7 May 2025).
- Environmental Protection Agency. Success in Mosquito Control: An Integrated Approach. 2024. Available online: https://www.epa.gov/mosquitocontrol/success-mosquito-control-integrated-approach (accessed on 7 May 2025).
- Yulfi, H.; Panggabean, M.; Darlan, D.M.; Siregar, I.S.; Rozi, M.F. Community-based intervention in mosquito control strategy: A systematic review. Narra J. 2025, 5, e1015. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Control in Emergencies: Field Manual; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Azam, F.B.; Carney, R.M.; Chellappan, S. Deep learning-based classification of Anopheles stephensi adult mosquitoes with enhanced solutions for data imbalance. In Proceedings of the 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Copenhagen, Denmark, 14–17 July 2025. In press. [Google Scholar]
- Azam, F.B.; Carney, R.M.; Kariev, S.; Nallan, K.; Subramanian, M.; Sampath, G.; Kumar, A.; Chellappan, S. Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques. Sci. Rep. 2023, 13, 22130. [Google Scholar] [CrossRef]
- The GLOBE Program. Mosquito Habitats Resource Library—GLOBE Observer—GLOBE.gov. n.d. Available online: https://observer.globe.gov/do-globe-observer/mosquito-habitats/resource-library (accessed on 7 May 2025).
- The GLOBE Program. Protocol eTraining Modules—GLOBE.gov. n.d. Available online: https://www.globe.gov/get-trained/protocol-etraining/protocol-etraining-modules/etraining-modules/16867649/12273 (accessed on 19 September 2025).
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria J. 2020, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Grejbine, A. Insectes diptères Culicidae: Anophelinae; Faune de Madagascar Tome XXII; Office de la Recherche Scientifique et Technique Outre-Mer & Centre National de la Recherche Scientifique: Paris, France, 1966; pp. 1–487.
- Pecor, D.B.; Potter, A.M.; Linton, Y.M. Implications of climate change and Anopheles stephensi Liston in Africa: Knowledge gaps and lessons from history. Curr. Trop. Med. Rep. 2023, 10, 320–330. [Google Scholar] [CrossRef]


| Sex | Training | Validation | Testing | |||
|---|---|---|---|---|---|---|
| Images | Specimens | Images | Specimens | Images | Specimens | |
| female | 101 | 11 | 23 | 6 | 36 | 6 | 
| male | 184 | 18 | 40 | 12 | 74 | 11 | 
| Architecture | Model | Classes | Accuracy (Val) % | Accuracy (Test) % | Conf % | Classification | 
|---|---|---|---|---|---|---|
| EfficientNet-B0 | 6-class | (ara, gam, ste) × (L3, L4) | 96.30 | 95.83 | 99.34 | An. stephensi | 
| EfficientNet-B0 | 2-class, L4 | gam, ste | 100 | 91.67 | 99.27 | An. stephensi | 
| EfficientNet-B0 | 3-class | ara, gam, ste | 96.30 | 91.67 | 98.61 | An. stephensi | 
| EfficientNet-B4 | 8-class | (ara, fun, gam, ste) × (L3, L4) | 97.22 | 97.92 | 97.90 | An. stephensi | 
| EfficientNet-B4 | 10-class | (alb, ara, fun, gam, ste) × (L3, L4) | 97.78 | 98.33 | 96.29 | An. stephensi | 
| Inception-ResNet-V2 | 4-class | (gam, ste × (L3, L4) | 97.22 | 97.92 | 95.19 | An. stephensi | 
| EfficientNet-B4 | 16-class | (tar, aeg, qui, alb, ara, fun, gam, ste) × (L3, L4) | 97.92 | 92.96 | 90.64 | An. stephensi | 
| EfficientNet-B4 | 14-class | (aeg, qui, alb, ara, fun, gam, ste) × (L3, L4) | 99.21 | 97.62 | 89.87 | An. stephensi | 
| EfficientNet-B4 | 12-class | (qui, alb, ara, fun, gam, ste) × (L3, L4) | 99.03 | 95.14 | 88.86 | An. stephensi | 
| EfficientNet-B0 | 4-class | (gam, ste) × (L3, L4) | 97.22 | 93.75 | 88.83 | An. stephensi | 
| EfficientNet-B0 | 2-class, L3 | gam, ste | 100 | 100 | 67.95 | An. stephensi | 
| EfficientNet-B0 | genus | Anopheles, not Anopheles | 100 | 100 | 99.09 | Anopheles | 
| Class | Confidence (%) | |
|---|---|---|
| Species and Instar | Species-Only | |
| An. stephensi L4 | 82.56% | 99.34% | 
| An. stephensi L3 | 16.78% | |
| An. arabiensis L4 | 5.59 × 10−1 | 6.42 × 10−1 | 
| An. arabiensis L3 | 8.34 × 10−2 | |
| An. gambiae L4 | 9.42 × 10−3 | 9.65 × 10−3 | 
| An. gambiae L3 | 2.24 × 10−4 | |
| Set | Accuracy | F1-Score | Precision | Sensitivity | Specificity | MACC 1 | 
|---|---|---|---|---|---|---|
| Validation | 95.44 | 96.49 | 94.33 | 98.75 | 89.67 | 90.18 | 
| Test | 84.89 | 89.20 | 85.92 | 92.74 | 68.75 | 64.70 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carney, R.M.; Azam, F.; Gehrisch, K.; Bhuiyan, T.; Rafarasoa, L.S.; Riantsoa, V.; Low, R.D.; Zohdy, S.; Andrianjafy, T.M.; Ramahazomanana, M.A.; et al. Artificial Intelligence and Citizen Science as a Tool for Global Mosquito Surveillance: Madagascar Case Study. Insects 2025, 16, 1098. https://doi.org/10.3390/insects16111098
Carney RM, Azam F, Gehrisch K, Bhuiyan T, Rafarasoa LS, Riantsoa V, Low RD, Zohdy S, Andrianjafy TM, Ramahazomanana MA, et al. Artificial Intelligence and Citizen Science as a Tool for Global Mosquito Surveillance: Madagascar Case Study. Insects. 2025; 16(11):1098. https://doi.org/10.3390/insects16111098
Chicago/Turabian StyleCarney, Ryan M., Farhat Azam, Karlene Gehrisch, Tanvir Bhuiyan, Lala S. Rafarasoa, Valéry Riantsoa, Russanne D. Low, Sarah Zohdy, Tovo M. Andrianjafy, Mamisoa A. Ramahazomanana, and et al. 2025. "Artificial Intelligence and Citizen Science as a Tool for Global Mosquito Surveillance: Madagascar Case Study" Insects 16, no. 11: 1098. https://doi.org/10.3390/insects16111098
APA StyleCarney, R. M., Azam, F., Gehrisch, K., Bhuiyan, T., Rafarasoa, L. S., Riantsoa, V., Low, R. D., Zohdy, S., Andrianjafy, T. M., Ramahazomanana, M. A., Rasolofo, R. N., Subramani, P. A., Ogbondah, M., Uelmen, J. A., Jr., & Chellappan, S. (2025). Artificial Intelligence and Citizen Science as a Tool for Global Mosquito Surveillance: Madagascar Case Study. Insects, 16(11), 1098. https://doi.org/10.3390/insects16111098
 
        
 
                                                



 
                         
       