Comprehensive Analysis of Cathepsin Genes in Hemiptera: Functional Characterization of the Venomous Cathepsin B from Sycanus bifidus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Gene Identification and Sequence Analysis
2.3. Gene Expression Profiling
2.4. Recombinant Production of Protein
2.5. Assay of Cathepsin Activity
2.6. Assay of Phenoloxidase Activity
2.7. Statistical Analysis
3. Results
3.1. Cathepsin Gene Repertoires in Hemipteran Species
3.2. Phylogenetic Analysis of Cathepsin Genes
3.3. Molecular Characteristics of S. bifidus Cathepsins
3.4. Profiling the Expression of Cathepsin Genes in S. bifidus
3.5. Validating the Expression of Cathepsin Genes in S. bifidus
3.6. Assay of the Enzymatic Activity of the Recombinant SbCAB2
3.7. Effects of Recombinant SbCAB2 on Hemolymph Melanization
4. Discussion
4.1. Cathepsin Gene Repertoire and Evolution in Hemiptera
4.2. Characteristics of S. bifidus Cathepsin Genes
4.3. Candidate Functions of S. bifidus Cathepsins
4.4. Functional Role of SbCAB2 in S. bifidus Venom
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Buttle, M.D.J. Cathepsin B. J. Cell. Biochem. 1997, 29, 715–720. [Google Scholar]
- Willstätter, R.; Bamann, E. Über die Proteasen der Magenschleimhaut. Erste Abhandlung über die Enzyme der Leukocyten. Biol. Chem. 1929, 180, 127–143. [Google Scholar] [CrossRef]
- Turk, D.; Podobnik, M.; Kuhelj, R.; Dolinar, M.; Turk, V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett. 1996, 384, 211–214. [Google Scholar] [CrossRef]
- Conus, S.; Simon, H.U. Cathepsins and their involvement in immune responses. Swiss Med. Wkly. 2010, 140, w13042. [Google Scholar] [CrossRef] [PubMed]
- Zavasnik-Bergant, T.; Turk, B. Cysteine cathepsins in the immune response. Tissue Antigens 2010, 67, 349–355. [Google Scholar] [CrossRef]
- Turk, B.; Turk, D.; Salvesen, G.S. Regulating cysteine protease activity: Essential role of protease inhibitors as guardians and regulators. Curr. Pharm. Des. 2002, 8, 1623–1637. [Google Scholar] [CrossRef]
- Turk, B.; Turk, D.; Turk, V. Lysosomal cysteine proteases: More than scavengers. Biochim. Biophys. Acta. 2000, 1477, 98–111. [Google Scholar] [CrossRef]
- Castino, R.; Pace, D.; Démoz, M.; Gargiulo, M.; Ariatta, C.; Raiteri, E.; Isidoro, C. Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int. J. Cancer 2002, 97, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Stoka, V.; Turk, V.; Turk, B. Lysosomal cysteine cathepsins: Signaling pathways in apoptosis. Biol. Chem. 2007, 388, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.P.; Silver, J. Cathepsins in neuronal plasticity. Neural Regen. Res. 2021, 16, 26–35. [Google Scholar] [CrossRef]
- Martynov, A.G.; Elpidina, E.N.; Perkin, L.; Oppert, B. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum. BMC Genom. 2015, 16, 75. [Google Scholar] [CrossRef]
- Schmitz, J.; Gilberg, E.; Löser, R.; Bajorath, J.; Bartz, U.; Gütschow, M. Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorg. Med. Chem. 2019, 27, 1–15. [Google Scholar] [CrossRef]
- Wiederanders, B.; Kaulmann, G.; Schilling, K. Functions of propeptide parts in cysteine proteases. Curr. Protein Pept. Sci. 2003, 4, 309–326. [Google Scholar] [CrossRef]
- Correa, K.C.S.; Moreira, A.C.; Ibrahim, A.G.A.E.-R.; de Jesus, H.C.R.; Micocci, K.C.; Kock, F.V.C.; Bueno, O.C.; Venâncio, T.; Henrique-Silva, F.; Souza, D.H.F. Identification and characterization of a recombinant cysteine peptidase (AsCathL) from leaf-cutting ant Atta sexdens Linnaeus, 1758 (Hymenoptera, Formicidae). Protein Expr. Purif. 2023, 201, 106174. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B.; Paretsky, D. Proteolytic enzymes in the house fly, Musca domestica (L.). Ann. Entomol. Soc. Am. 1955, 48, 46–50. [Google Scholar] [CrossRef]
- Gureeva, T.A.; Timoshenko, O.S.; Kugaevskaya, E.V.; Solovyova, N.I. Cysteine cathepsins: Structure, physiological functions and their role in carcinogenesis. Biomed. Khim. 2021, 67, 453–464. [Google Scholar] [CrossRef]
- Houseman, J.G.; Downe, A.E.R. Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae). Insect Biochem. 1981, 10, 363–366. [Google Scholar] [CrossRef]
- Terra, W.R.; Dias, R.O.; Ferreira, C. Recruited lysosomal enzymes as major digestive enzymes in insects. Biochem. Soc. Trans. 2019, 47, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Saikhedkar, N.; Summanwar, A.; Joshi, R.; Giri, A. Cathepsins of lepidopteran insects: Aspects and prospects. Insect Biochem. Mol. Biol. 2015, 64, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.Q.; Han, X.L.; Kang, X.L.; Wang, D.; Chen, C.H.; Wang, J.X.; Zhao, X.F. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 2021, 17, 1170–1192. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Zhang, Y.; Liu, Q.; Li, Y.; Gong, J.; Hou, Y. Cathepsin-L is involved in degradation of fat body and programmed cell death in Bombyx mori. Gene 2020, 760, 144998. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, K.; Li, C.; Hu, X.; Kausar, S.; Gu, H.; Yang, L.; Cui, H. A hemocyte-specific cathepsin L-like cysteine protease is involved in response to 20-hydroxyecdysone and microbial pathogens stimulation in silkworm, Bombyx mori. Mol. Immunol. 2021, 131, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Chen, C.; Xu, W.J.; Abbas, M.N.; Mu, F.F.; Ding, W.J.; Zhang, H.J.; Li, J. Functions of Bombyx mori cathepsin L-like in innate immune response and anti-microbial autophagy. Dev. Comp. Immunol. 2021, 116, 103927. [Google Scholar] [CrossRef]
- Dvoryakova, E.A.; Vinokurov, K.S.; Tereshchenkova, V.F.; Dunaevsky, Y.E.; Belozersky, M.A.; Oppert, B.; Filippova, I.Y.; Elpidina, E.N. Primary digestive cathepsins L of Tribolium castaneum larvae: Proteomic identification, properties, comparison with human lysosomal cathepsin L. Insect Biochem. Mol. Biol. 2022, 140, 103679. [Google Scholar] [CrossRef]
- Pimentel, A.C.; Dias, R.O.; Bifano, T.D.; Genta, F.A.; Ferreira, C.; Terra, W.R. Cathepsins L and B in Dysdercus peruvianus, Rhodnius prolixus, and Mahanarva fimbriolata. Looking for enzyme adaptations to digestion. Insect Biochem. Mol. Biol. 2020, 127, 103488. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.P.; Dias, R.O.; Bernardes, V.; Barroso, I.G.; Cardoso, C.; Ferreira, C.; Terra, W.R. Recruitment of lysosomal cathepsins B, L and D as digestive enzymes in Coleoptera. Insect Mol. Biol. 2022, 31, 225–240. [Google Scholar] [CrossRef]
- Johnson, K.P.; Dietrich, C.H.; Friedrich, F.; Beutel, R.G.; Wipfler, B.; Peters, R.S.; Allen, J.M.; Petersen, M.; Donath, A.; Walden, K.K.O.; et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA 2018, 115, 12775–12780. [Google Scholar] [CrossRef]
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Carver, M.; Gross, G.; Woodward, T. Hemiptera (bugs, leafhoppers, cicadas, aphids, scale insects etc.). In Insects of Australia; Melbourne University Press: Carlton, VIC, Australia, 1994; pp. 429–509. [Google Scholar]
- Panfilio, K.A.; Angelini, D.R. By land, air, and sea: Hemipteran diversity through the genomic lens. Curr. Opin. Insect Sci. 2018, 25, 106–115. [Google Scholar] [CrossRef]
- Terra, W.R.; Ferreira, C. Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Struct. Dev. 2020, 56, 100931. [Google Scholar] [CrossRef]
- Weirauch, C.; Schuh, R.T. Systematics and evolution of Heteroptera: 25 years of progress. Annu. Rev. Entomol. 2011, 56, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.; Martínez, L.C.; Cossolin, J.F.S.; Plata-Rueda, A.; Viteri Jumbo, L.O.; Fiaz, M.; Carvalho, A.G.; Zanuncio, J.C.; Serrão, J.E. The salivary glands of Brontocoris tabidus (Heteroptera: Pentatomidae): Morphology and secretory cycle. Tissue Cell 2021, 70, 101498. [Google Scholar] [CrossRef]
- Cantón, P.E.; Bonning, B.C. Extraoral digestion: Outsourcing the role of the hemipteran midgut. Curr. Opin. Insect Sci. 2020, 41, 86–91. [Google Scholar] [CrossRef]
- Cohen, A.C. Solid-to-Liquid feeding: The inside(s) story of extra-oral digestion in predaceous Arthropoda. Am. Entomol. 1998, 44, 103–117. [Google Scholar] [CrossRef]
- Yoon, K.A.; Kim, W.J.; Lee, S.; Yang, H.S.; Lee, B.H.; Lee, S.H. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. Insect Sci. 2022, 29, 411–429. [Google Scholar] [CrossRef]
- Walker, A.A.; Weirauch, C.; Fry, B.G.; King, G.F. Venoms of heteropteran insects: A treasure trove of diverse pharmacological toolkits. Toxins 2016, 8, 43. [Google Scholar] [CrossRef]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.A.; Mayhew, M.L.; Jin, J.; Herzig, V.; Undheim, E.A.B.; Sombke, A.; Fry, B.G.; Meritt, D.J.; King, G.F. The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nat. Commun. 2018, 9, 755. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.A.; Hernández-Vargas, M.J.; Corzo, G.; Fry, B.G.; King, G.F. Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. Cell Mol. Life Sci. 2018, 75, 3215–3229. [Google Scholar] [CrossRef]
- Fischer, M.L.; Wielsch, N.; Heckel, D.G.; Vilcinskas, A.; Vogel, H. Context-dependent venom deployment and protein composition in two assassin bugs. Ecol. Evol. 2020, 10, 9932–9947. [Google Scholar] [CrossRef]
- Fischer, M.L.; Yepes Vivas, S.A.; Wielsch, N.; Kirsch, R.; Vilcinskas, A.; Vogel, H. You are what you eat-ecological niche and microhabitat influence venom activity and composition in aquatic bugs. Proc. Biol. Sci. 2023, 290, 20222064. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Wang, Y.; Wei, S.; Zhu, J. Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. Int. J. Biol. Macromol. 2023, 250, 126162. [Google Scholar] [CrossRef]
- Fabricius, J.C. Mantissa insectorum sistens species nuper detectas adjectis synonymis, observationibus, descriptionibus, emendationibus. Christ. Gottlieb Proft. Hafniae 1787, 2, 1–382. [Google Scholar]
- Zhao, P.; Chen, S.; Liu, Y.; Wang, J.; Chen, Z.; Li, H.; Cai, W. Review of the genus Sycanus Amyot & serville, 1843 (Heteroptera: Reduviidae: Harpactorinae), from China based on DNA barcoding and morphological evidence. Insects 2024, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Yang, P.; Zhang, Z.; Wu, G.X.; Yang, B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS ONE 2013, 8, e54411. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Jing, D.; Tang, S.; Chen, X.; Chen, H.; Duanmu, H.; Cong, Y.; Chen, M.; Ye, X.; Zhou, H.; et al. InsectBase 2.0: A comprehensive gene resource for insects. Nucleic Acids Res. 2022, 50, 1040–1045. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Moran, N.A. The aphid X chromosome is a dangerous place for functionally important genes: Diverse evolution of hemipteran genomes based on chromosome-level assemblies. Mol. Biol. Evol. 2020, 37, 2357–2368. [Google Scholar] [CrossRef]
- Xie, W.; He, C.; Fei, Z.; Zhang, Y. Chromosome-level genome assembly of the greenhouse whitefly (Trialeurodes vaporariorum Westwood). Mol. Ecol. Resour. 2020, 20, 995–1006. [Google Scholar] [CrossRef]
- Mathers, T.C.; Wouters, R.H.M.; Mugford, S.T.; Swarbreck, D.; van Oosterhout, C.; Hogenhout, S.A. Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol. Biol. Evol. 2021, 38, 856–875. [Google Scholar] [CrossRef]
- Quan, Q.; Hu, X.; Pan, B.; Zeng, B.; Wu, N.; Fang, G.; Cao, Y.; Chen, X.; Li, X.; Huang, Y.; et al. Draft genome of the cotton aphid Aphis gossypii. Insect Biochem. Mol. Biol. 2019, 105, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.J.; Nickerson, M.L.; Dean, M.; Song, Y.; Hoyt, P.R.; Rhee, H.; Kim, C.; Puterka, G.J. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genom. 2015, 16, 429. [Google Scholar] [CrossRef]
- Biello, R.; Singh, A.; Godfrey, C.J.; Fernández, F.F.; Mugford, S.T.; Powell, G.; Hogenhout, S.A.; Mathers, T.C. A chromosome-level genome assembly of the woolly apple aphid, Eriosoma lanigerum Hausmann (Hemiptera: Aphididae). Mol. Ecol. Resour. 2021, 21, 316–326. [Google Scholar] [CrossRef]
- Mathers, T.C.; Mugford, S.T.; Hogenhout, S.A.; Tripathi, L. Genome sequence of the banana aphid, Pentalonia nigronervosa coquerel (Hemiptera: Aphididae) and its symbionts. G3 Genes Genomes Genet. 2020, 10, 4315–4321. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Q.; Qin, Y.; Yin, H.; Zhang, S.; Li, Q.; Zhang, Y.; Fan, J.; Chen, J. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience 2019, 8, giz101. [Google Scholar] [CrossRef] [PubMed]
- Kohli, S.; Gulati, P.; Narang, A.; Maini, J.; Shamsudheen, K.V.; Pandey, R.; Scaria, V.; Sivasubbu, S.; Brahmachari, V. Genome and transcriptome analysis of the mealybug Maconellicoccus hirsutus: Correlation with its unique phenotypes. Genomics 2021, 113, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tong, H.; Wang, S.; Ye, W.; Li, Z.; Omar, M.A.A.; Ao, Y.; Ding, S.; Li, Z.; Wang, Y.; et al. A chromosome-level genome assembly provides new insights into paternal genome elimination in the cotton mealybug Phenacoccus solenopsis. Mol. Ecol. Resour. 2020, 20, 1733–1747. [Google Scholar] [CrossRef]
- Garber, A.I.; Kupper, M.; Laetsch, D.R.; Weldon, S.R.; Ladinsky, M.S.; Bjorkman, P.J.; McCutcheon, J.P. The evolution of interdependence in a four-way mealybug symbiosis. Genome Biol. Evol. 2021, 13, evab123. [Google Scholar] [CrossRef]
- Ettinger, C.L.; Byrne, F.J.; Collin, M.A.; Carter-House, D.; Walling, L.L.; Atkinson, P.W.; Redak, R.A.; Stajich, J.E. Improved draft reference genome for the Glassy-winged Sharpshooter (Homalodisca vitripennis), a vector for Pierce’s disease. G3 Genes Genomes Genet. 2021, 11, jkab255. [Google Scholar] [CrossRef]
- Ma, W.; Xu, L.; Hua, H.; Chen, M.; Guo, M.; He, K.; Zhao, J.; Li, F. Chromosomal-level genomes of three rice planthoppers provide new insights into sex chromosome evolution. Mol. Ecol. Resour. 2021, 21, 226–237. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Y.; Zhang, Y.; Hu, W.; Li, Y.; Zhu, D.; Zhou, Z.; Wu, J.; Chen, N.; Zhou, X.N. A chromosomal-level genome assembly for the insect vector for Chagas disease, Triatoma rubrofasciata. Gigascience 2019, 8, giz089. [Google Scholar] [CrossRef]
- Rosenfeld, J.A.; Reeves, D.; Brugler, M.R.; Narechania, A.; Simon, S.; Durrett, R.; Foox, J.; Shianna, K.; Schatz, M.C.; Gandara, J.; et al. Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat. Commun. 2016, 7, 10164. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Z.; Zhou, W.; Wang, G.; Shi, X.; He, K.; Li, F.; Zhu, Z.R. Chromosome-level genome assembly of the mirid predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. Mol. Ecol. Resour. 2022, 22, 1086–1099. [Google Scholar] [CrossRef]
- Ferguson, K.B.; Visser, S.; Dalíková, M.; Provazníková, I.; Urbaneja, A.; Pérez-Hedo, M.; Marec, F.; Werren, J.H.; Zwaan, B.J.; Pannebakker, B.A.; et al. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol. Biol. 2021, 30, 188–209. [Google Scholar] [CrossRef]
- Huang, H.J.; Ye, Y.X.; Ye, Z.X.; Yan, X.T.; Wang, X.; Wei, Z.Y.; Chen, J.P.; Li, J.M.; Sun, Z.T.; Zhang, C.X. Chromosome-level genome assembly of the bean bug Riptortus pedestris. Mol. Ecol. Resour. 2021, 21, 2423–2436. [Google Scholar] [CrossRef]
- Sparks, M.E.; Bansal, R.; Benoit, J.B.; Blackburn, M.B.; Chao, H.; Chen, M.; Cheng, S.; Childers, C.; Dinh, H.; Doddapaneni, H.V.; et al. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: Putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genom. 2020, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. In Biocomputing; World Scientific Publishing Company: Stanford, CA, USA, 2002; pp. 310–322. [Google Scholar]
- Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.; Thompson, J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003, 31, 3497–3500. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.4.4. Institute of Evolutionary Biology, University of Edinburgh. 2018. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 4 July 2023).
- Su, D.Y.; Wang, Y.Q.; Li, L.; Wu, G.X.; Zhu, J.Y. A protocol for dissecting the salivary gland from predatory bug—A case study in Eocanthecona furcellata. J. Environ. Entomol. 2022, 45, 1126–1129. [Google Scholar]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Simon, P. Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics 2003, 19, 1439–1440. [Google Scholar] [CrossRef]
- Sokolov, B.P.; Prockop, D.J. A rapid and simple PCR-based method for isolation of cDNAs from differentially expressed genes. Nucleic Acids Res. 1994, 22, 4009–4015. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Kurata, S.; Natori, S. Purification and characterization of a hemocyte proteinase of Sarcophaga, possibly participating in elimination of foreign substances. Eur. J. Biochem. 1992, 209, 939–944. [Google Scholar] [CrossRef]
- Dai, Y.; Jing, T.Y.; Wu, J.C. Fluorescemine method applying to the determination of penicillin acylase activity. J. Hebei Univ. 1989, 9, 90–94. [Google Scholar]
- Yan, Z.; Fang, Q.; Liu, Y.; Xiao, S.; Yang, L.; Wang, F.; An, C.; Werren, J.H.; Ye, G. A venom serpin splicing isoform of the endoparasitoid wasp Pteromalus puparum suppresses host prophenoloxidase cascade by forming complexes with host hemolymph proteinases. J. Biol. Chem. 2017, 292, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, X.; Li, Z.; Li, J.; Chen, S.; Guo, C.; Hou, Y.; Zhao, P. Identification and expression pattern of cathepsin family in silkworm (Bombyx mori). Chin. J. Biotechnol. 2015, 31, 1728–1740. [Google Scholar]
- Rispe, C.; Kutsukake, M.; Doublet, V.; Hudaverdian, S.; Legeai, F.; Simon, J.C.; Tagu, D.; Fukatsu, T. Large gene family expansion and variable selective pressures for cathepsin B in aphids. Mol. Biol. Evol. 2008, 25, 5–17. [Google Scholar] [CrossRef]
- Bansal, R.; Michel, A. Expansion of cytochrome P450 and cathepsin genes in the generalist herbivore brown marmorated stink bug. BMC Genom. 2018, 19, 60. [Google Scholar] [CrossRef]
- Houseman, J.G.; Downe, A.E.R. Cathepsin D-like activity in the posterior midgut of hemipteran insects. Comp. Biochem. Phys. B. 1983, 75, 509–512. [Google Scholar] [CrossRef]
- Cristofoletti, P.T.; Ribeiro, A.F.; Terra, W.R. The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: Sequence, properties, immunocytochemical localization and function. Insect Biochem. Mol. Biol. 2005, 35, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.S.; Gomes, B.; da Costa, S.G.; Moraes, C.D.S.; Mesquita, R.D.; Dillon, V.M.; Garcia, E.S.; Azambuja, P.; Dillon, R.J.; Genta, F.A. Genome wide mapping of peptidases in Rhodnius prolixus: Identification of protease gene duplications, horizontally transferred proteases and analysis of peptidase a1 structures, with considerations on their role in the evolution of hematophagy in Triatominae. Front. Physiol. 2017, 8, 1051. [Google Scholar] [CrossRef]
- Pimentel, A.C.; Fuzita, F.J.; Palmisano, G.; Ferreira, C.; Terra, W.R. Role of cathepsins D in the midgut of Dysdercus peruvianus. Comp. Biochem. Phys. B. 2017, 204, 45–52. [Google Scholar] [CrossRef]
- Kutsukake, M.; Nikoh, N.; Shibao, H.; Rispe, C.; Simon, J.C.; Fukatsu, T. Evolution of soldier-specific venomous protease in social aphids. Mol. Biol. Evol. 2008, 25, 2627–2641. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.; Tong, J.; Ge, P.; Wang, Q.; Zhao, Z.; Zhu-Salzman, K.; Hogenhout, S.A.; Ge, F.; Sun, Y. An aphid-secreted salivary protease activates plant defense in phloem. Curr. Biol. 2020, 30, 4826–4836. [Google Scholar] [CrossRef]
- Chen, W.; Hasegawa, D.K.; Kaur, N.; Kliot, A.; Pinheiro, P.V.; Luan, J.; Stensmyr, M.C.; Zheng, Y.; Liu, W.; Sun, H.; et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.Y.; Liao, J.Y.; Fajar, A.; Chen, J.B.; Wei, Y.; Zhang, Z.H.; Zhang, Z.; Zheng, L.M.; Tan, X.Q.; Zhou, X.G.; et al. Co-infection of TYLCV and ToCV increases cathepsin B and promotes ToCV transmission by Bemisia tabaci MED. Front. Microbiol. 2023, 14, 1107038. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, P.; Shi, C.; Luo, R.; Zhang, D.; Zhang, Z.; Gao, Y.; Peng, J.; Preisser, E.L.; Liu, Y. Cathepsin F alters viral acquisition, retention, and transmission of TYLCV and ToCV by Bemisia tabaci MED. J. Econ. Entomol. 2025, 118, 486–494. [Google Scholar] [CrossRef]
- Mathers, T.C.; Chen, Y.; Kaithakottil, G.; Legeai, F.; Mugford, S.T.; Baa-Puyoulet, P.; Bretaudeau, A.; Clavijo, B.; Colella, S.; Collin, O.; et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 2017, 18, 27. [Google Scholar]
- Kim, J.W.; Cho, J.Y.; Kim, J.; Kim, D.G.; Nam, B.H.; Kim, Y.O.; An, C.M.; Kim, B.S.; Park, J.Y.; Kong, H.J. First report of cathepsin E in a teleost (Korean rose bitterling, Rhodeus uyekii): Molecular characterisation and tissue distribution. Dev. Comp. Immunol. 2020, 106, 103607. [Google Scholar] [CrossRef]
- Wang, B.; Shi, G.P.; Yao, P.M.; Li, Z.; Chapman, H.A.; Brömme, D. Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J. Biol. Chem. 1998, 273, 32000–32008. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Morton, F.R. The MEROPS batch BLAST: A tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie 2008, 90, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.R. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 189–215. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Kurz, U.; Schultz, J.E.; Lim, C.C.; Wiederanders, B.; Schilling, K. The alpha1/2 helical backbone of the prodomains defines the intrinsic inhibitory specificity in the cathepsin L-like cysteine protease subfamily. FEBS Lett. 2000, 469, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.M. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev. 2002, 102, 4431–4458. [Google Scholar] [CrossRef]
- Pandey, K.C.; Barkan, D.T.; Sali, A.; Rosenthal, P.J. Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS ONE 2009, 4, e5694. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, X.; Zhao, R.; Li, B.; Yang, Z.; Gao, M.; Cao, X.; Jiang, C. Characteristics of cathepsin members and expression responses to poly I:C challenge in Pacific cod (Gadus macrocephalus). Fish. Shellfish. Immunol. 2022, 128, 484–493. [Google Scholar] [CrossRef]
- Musil, D.; Zucic, D.; Turk, D.; Engh, R.A.; Mayr, I.; Huber, R.; Popovic, T.; Turk, V.; Towatari, T.; Katunuma, N.; et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. Embo J. 1991, 10, 2321–2330. [Google Scholar] [CrossRef]
- Illy, C.; Quraishi, O.; Wang, J.; Purisima, E.; Vernet, T.; Mort, J.S. Role of the occluding loop in cathepsin B activity. J. Biol. Chem. 1997, 272, 1197–1202. [Google Scholar] [CrossRef]
- Lambeth, T.R.; Dai, Z.; Zhang, Y.; Julian, R.R. A two-trick pony: Lysosomal protease cathepsin B possesses surprising ligase activity. RSC Chem. Biol. 2021, 2, 606–611. [Google Scholar] [CrossRef]
- Villalobo, E.; Moch, C.; Fryd-Versavel, G.; Fleury-Aubusson, A.; Morin, L. Cysteine proteases and cell differentiation: Excystment of the ciliated protist Sterkiella histriomuscorum. Eukaryot. Cell 2003, 2, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Groves, M.R.; Taylor, M.A.; Scott, M.; Cummings, N.J.; Pickersgill, R.W.; Jenkins, J.A. The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Structure 1996, 4, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Turk, V.; Bode, W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991, 285, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Buša, M.; Matoušková, Z.; Bartošová-Sojková, P.; Pachl, P.; Řezáčová, P.; Eichenberger, R.M.; Deplazes, P.; Horn, M.; Štefanić, S.; Mareš, M. An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily. J. Biol. Chem. 2023, 299, 102970. [Google Scholar] [CrossRef]
- Zhou, A. Functional structure of the somatomedin B domain of vitronectin. Protein Sci. 2007, 16, 1502–1508. [Google Scholar] [CrossRef]
- Schar, C.R.; Jensen, J.K.; Christensen, A.; Blouse, G.E.; Andreasen, P.A.; Peterson, C.B. Characterization of a site on PAI-1 that binds to vitronectin outside of the somatomedin B domain. J. Biol. Chem. 2008, 283, 28487–28496. [Google Scholar] [CrossRef]
- Chu, Y.; Bucci, J.C.; Peterson, C.B. Identification of a PAI-1-binding site within an intrinsically disordered region of vitronectin. Protein Sci. 2020, 29, 494–508. [Google Scholar] [CrossRef]
- Li, T.; Hao, L.; Li, J.; Du, C.; Wang, Y. Insight into vitronectin structural evolution on material surface chemistries: The mediation for cell adhesion. Bioact. Mater. 2020, 5, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Fagotto, F. Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch. Insect Biochem. Physiol. 1990, 14, 217–235. [Google Scholar] [CrossRef]
- Uchida, K.; Ohmori, D.; Ueno, T.; Nishizuka, M.; Eshita, Y.; Fukunaga, A.; Kominami, E. Preoviposition activation of cathepsin-like proteinases in degenerating ovarian follicles of the mosquito Culex pipiens pallens. Dev. Biol. 2001, 237, 68–78. [Google Scholar] [CrossRef]
- Zhao, X.F.; An, X.M.; Wang, J.X.; Dong, D.J.; Du, X.J.; Sueda, S.; Kondo, H. Expression of the Helicoverpa cathepsin B-like proteinase during embryonic development. Arch. Insect Biochem. Physiol. 2005, 58, 39–46. [Google Scholar] [CrossRef]
- de Almeida, E.; Dittz, U.; Pereira, J.; Walter-Nuno, A.B.; Paiva-Silva, G.O.; Lacerda-Abreu, M.A.; Meyer-Fernandes, J.R.; Ramos, I. Functional characterization of maternally accumulated hydrolases in the mature oocytes of the vector Rhodnius prolixus reveals a new protein phosphatase essential for the activation of the yolk mobilization and embryo development. Front. Physiol. 2023, 14, 1142433. [Google Scholar] [CrossRef]
- Götz, B.; Felleisen, R.; Shaw, E.; Klinkert, M.Q. Expression of an active cathepsin B-like protein Sm31 from Schistosoma mansoni in insect cells. Trop. Med. Parasitol. 1992, 43, 282–284. [Google Scholar]
- Baek, J.H.; Lee, S.H. Differential gene expression profiles in the salivary gland of Orius laevigatus. J. Asia-Pac. Entomol. 2014, 17, 729–735. [Google Scholar] [CrossRef]
- Walker, A.A.; Madio, B.; Jin, J.; Undheim, E.A.; Fry, B.G.; King, G.F. Melt with this kiss: Paralyzing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol. Cell Proteom. 2017, 16, 552–566. [Google Scholar] [CrossRef]
- Ashida, M.; Yoshida, H. Limited proteolysis of prophenoloxidase during activation by microbial products in insect plasma and effect of phenoloxidase on electrophoretic mobilities of plasma proteins. Insect Biochem. 1988, 18, 11–19. [Google Scholar] [CrossRef]
- Kanost, M.R.; Jiang, H. Clip-domain serine proteases as immune factors in insect hemolymph. Curr. Opin. Insect Sci. 2015, 11, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Whitten, M.M.A.; Coates, C.J. Re-evaluation of insect melanogenesis research: Views from the dark side. Pigment. Cell Melanoma Res. 2017, 30, 386–401. [Google Scholar] [CrossRef]
- Marieshwari, B.N.; Bhuvaragavan, S.; Sruthi, K.; Mullainadhan, P.; Janarthanan, S. Insect phenoloxidase and its diverse roles: Melanogenesis and beyond. J. Comp. Physiol. B. 2023, 193, 1–23. [Google Scholar] [CrossRef]
- Wang, Y.H.; Chang, M.M.; Wang, X.L.; Zheng, A.H.; Zou, Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev. Comp. Immunol. 2018, 83, 12–21. [Google Scholar] [CrossRef]
- Janciauskiene, S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim. Biophys. Acta. 2001, 1535, 221–235. [Google Scholar] [CrossRef]
- Zou, Z.; Jiang, H. Manduca sexta serpin-6 regulates immune serine proteinases PAP-3 and HP8. cDNA cloning, protein expression, inhibition kinetics, and function elucidation. J. Biol. Chem. 2005, 280, 14341–14348. [Google Scholar] [CrossRef]
- Bao, J.; Liu, L.; An, Y.; Ran, M.; Ni, W.; Chen, J.; Wei, J.; Li, T.; Pan, G.; Zhou, Z. Nosema bombycis suppresses host hemolymph melanization through secreted serpin 6 inhibiting the prophenoloxidase activation cascade. J. Invertebr. Pathol. 2019, 168, 107260. [Google Scholar] [CrossRef]
- Li, H.; Tang, H.; Sivakumar, S.; Philip, J.; Harrison, R.L.; Gatehouse, J.A.; Bonning, B.C. Insecticidal activity of a basement membrane-degrading protease against Heliothis virescens (Fabricius) and Acyrthosiphon pisum (Harris). J. Insect Physiol. 2008, 54, 777–789. [Google Scholar] [CrossRef]
- Pyati, P.S.; Bell, H.A.; Fitches, E.; Price, D.R.; Gatehouse, A.M.; Gatehouse, J.A. Cathepsin L-like cysteine proteinase (DcCathL) from Delia coarctata (wheat bulb fly): Basis of insecticidal activity. Insect Biochem. Mol. Biol. 2009, 39, 535–546. [Google Scholar] [CrossRef]
- Colinet, D.; Dubuffet, A.; Cazes, D.; Moreau, S.; Drezen, J.M.; Poirié, M. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol. 2009, 33, 681–689. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, R.; Lin, Z.; Shi, S.; Chen, C.; Jiang, H.; Zou, Z.; Lu, Z. Two venom serpins from the parasitoid wasp Microplitis mediator inhibit the host prophenoloxidase activation and antimicrobial peptide synthesis. Insect Biochem. Mol. Biol. 2023, 152, 103895. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Whitten, M.M.; Kryukov, V.Y.; Yaroslavtseva, O.N.; Grizanova, E.V.; Greig, C.; Mukherjee, K.; Vilcinskas, A.; Mitkovets, P.V.; Glupov, V.V.; et al. More than a colour change: Insect melanism, disease resistance and fecundity. Proc. Biol. Sci. 2013, 280, 20130584. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Kim, Y. Prostaglandin catabolism in Spodoptera exigua, a lepidopteran insect. J. Exp. Biol. 2020, 223, 233221. [Google Scholar] [CrossRef]
- Mao, Z.; Wang, B.; Chen, Y.; Ying, J.; Wang, H.; Li, J.; Zhang, C.; Zhuo, J. Musashi orchestrates melanism in Laodelphax striatellus. Insect Sci. 2025, 32, 140–150. [Google Scholar] [CrossRef]









| Gene Name | Proteinase Type | Signal Peptide | MW (kDa) | PI | N-Glycosylation Sites |
|---|---|---|---|---|---|
| SbCAB1 | Cathepsin B | 22–23 | 50.88 | 8.57 | 2 (NSTC, NGTF) |
| SbCAB2 | 20–21 | 37.32 | 6.82 | 2 (NTTE, NGTF) | |
| SbCAB3 | – | 71.70 | 5.71 | 3 (NCTI, NATP, NISY) | |
| SbCAB4 | – | 32.68 | 8.88 | 4 (NKTL, NGTR, NITY, NGTD) | |
| SbCAB5 | 16–17 | 37.28 | 6.66 | 3 (NTTW, NGTR, NGTR) | |
| SbCAD1 | Cathepsin D | 23–24 | 35.58 | 5.04 | 0 |
| SbCAD2 | 20–21 | 45.03 | 5.34 | 3 (NFTI, NQTF, NVST) | |
| SbCAD3 | 17–18 | 42.07 | 5.55 | 2 (NLST, NQTF) | |
| SbCAD4 | 16–17 | 41.59 | 4.95 | 3 (NGTE, NIST, NYTL) | |
| SbCAD5 | – | 57.31 | 5.75 | 4 (NSST, NVSD, NETG, NVSF) | |
| SbCAD6 | 22–23 | 22.23 | 9.54 | 1 (NQTF) | |
| SbCAD7 | 18–19 | 48.49 | 5.85 | 2 (NISI, NKSS) | |
| SbCAD8 | – | 39.87 | 5.24 | 6 (NGTV, NLTY, NCTS, NKTK, NTTG, NASE) | |
| SbCAD9 | 20–21 | 46.31 | 8.86 | 6 (NGSG, NVSM, NVTN, NVTF, NFTD, NFTL) | |
| SbCAL1 | Cathepsin L | 19–20 | 63.29 | 6.76 | 3 (NGTA, NMTC, NVTS) |
| SbCAL2 | – | 71.93 | 6.21 | 1 (NKSL) | |
| SbCAL3 | 15–16 | 36.83 | 7.51 | 0 | |
| SbCAL4 | 19–20 | 35.31 | 5.08 | 1 (NLTQ) | |
| SbCAL5 | – | 72.25 | 5.51 | 4 (NSST, NVSD, NETG, NVSF) | |
| SbCAL6 | 16–17 | 37.62 | 5.23 | 0 | |
| SbCAF | Cathepsin F | 26–27 | 89.94 | 6.99 | 5 (NATT, NITL, NRSE, NVSQ, NPTT) |
| SbCAO | Cathepsin O | 25–26 | 39.75 | 8.21 | 4 (NKTY, NSSD, NKSN, NYSC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Liu, S.; Wang, Y.; Wu, C.; Wang, W.; Zhu, J. Comprehensive Analysis of Cathepsin Genes in Hemiptera: Functional Characterization of the Venomous Cathepsin B from Sycanus bifidus. Insects 2025, 16, 1078. https://doi.org/10.3390/insects16111078
Liang W, Liu S, Wang Y, Wu C, Wang W, Zhu J. Comprehensive Analysis of Cathepsin Genes in Hemiptera: Functional Characterization of the Venomous Cathepsin B from Sycanus bifidus. Insects. 2025; 16(11):1078. https://doi.org/10.3390/insects16111078
Chicago/Turabian StyleLiang, Wenkai, Sha Liu, Yuqin Wang, Chaoyan Wu, Wenxiu Wang, and Jiaying Zhu. 2025. "Comprehensive Analysis of Cathepsin Genes in Hemiptera: Functional Characterization of the Venomous Cathepsin B from Sycanus bifidus" Insects 16, no. 11: 1078. https://doi.org/10.3390/insects16111078
APA StyleLiang, W., Liu, S., Wang, Y., Wu, C., Wang, W., & Zhu, J. (2025). Comprehensive Analysis of Cathepsin Genes in Hemiptera: Functional Characterization of the Venomous Cathepsin B from Sycanus bifidus. Insects, 16(11), 1078. https://doi.org/10.3390/insects16111078

