Identification, Expression of AaSQSTM1 in Aedes albopictus and Its Autophagic Function Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequence Alignments and Phylogenetic Tree Analysis
2.2. Structural Modeling of Mosquito SQSTM1
2.3. Cell Culture and Mosquito Rearing, Blood Feeding, and Tissue Dissection
2.4. Starvation Induction, Chemical Treatments and Antibodies
2.5. RNA Extraction and RT-qPCR
2.6. Protein Sample Preparation and Western Blot Analysis
2.7. Plasmids Construction and Immunofluorescence Assay
2.8. Data Analysis
3. Results
3.1. Identification and Sequence Characterization of AaSQSTM1
3.2. Phylogenetic Tree and Functional Domains of AaSQSTM1
3.3. Temporal Expression Patterns of AaSQSTM1 and AaAtg8 in Mosquito Development
3.4. Spatial Expression Patterns of AaSQSTM1 and AaAtg8 in Tissues from Female Adults
3.5. Endogenous AaSQSTM1 and AaAtg8 Expression Levels to Monitor Autophagy Activity
3.6. Overexpressing Fluorescent AaSQSTM1 and the AaAtg8 Reporter to Monitor Autophagy Flux
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Anding, A.L.; Baehrecke, E.H. Cleaning House: Selective Autophagy of Organelles. Dev. Cell 2017, 41, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Brumell, J.H. Bacteria-autophagy interplay: A battle for survival. Nat. Rev. Microbiol. 2014, 12, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiao, J.; Zhang, D.; Zhong, C.; Wang, S.; Li, X.; Feng, L.; Shi, S.; Wang, B.; Liu, Q. Systematic identification of autophagy-related proteins in Aedes albopictus. PLoS ONE 2021, 16, e0245694. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.J.; Hansen, M.; Troemel, E. Autophagy and innate immunity: Insights from invertebrate model organisms. Autophagy 2018, 14, 233–242. [Google Scholar] [CrossRef]
- Malagoli, D.; Abdalla, F.C.; Cao, Y.; Feng, Q.; Fujisaki, K.; Gregorc, A.; Matsuo, T.; Nezis, I.P.; Papassideri, I.S.; Sass, M.; et al. Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives. Autophagy 2010, 6, 575–588. [Google Scholar] [CrossRef]
- Gohel, R.; Kournoutis, A.; Petridi, S.; Nezis, I.P. Molecular mechanisms of selective autophagy in Drosophila. Int. Rev. Cell Mol. Biol. 2020, 354, 63–105. [Google Scholar] [CrossRef]
- Viret, C.; Duclaux-Loras, R.; Nancey, S.; Rozieres, A.; Faure, M. Selective Autophagy Receptors in Antiviral Defense. Trends Microbiol. 2021, 29, 798–810. [Google Scholar] [CrossRef]
- Aparicio, R.; Hansen, M.; Walker, D.W.; Kumsta, C. The selective autophagy receptor SQSTM1/p62 improves lifespan and proteostasis in an evolutionarily conserved manner. Autophagy 2020, 16, 772–774. [Google Scholar] [CrossRef]
- Kageyama, S.; Gudmundsson, S.R.; Sou, Y.S.; Ichimura, Y.; Tamura, N.; Kazuno, S.; Ueno, T.; Miura, Y.; Noshiro, D.; Abe, M.; et al. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 2021, 12, 16. [Google Scholar] [CrossRef]
- Katsuragi, Y.; Ichimura, Y.; Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015, 282, 4672–4678. [Google Scholar] [CrossRef]
- Zaffagnini, G.; Savova, A.; Danieli, A.; Romanov, J.; Tremel, S.; Ebner, M.; Peterbauer, T.; Sztacho, M.; Trapannone, R.; Tarafder, A.K.; et al. Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy 2018, 14, 1280–1282. [Google Scholar] [CrossRef]
- Berkamp, S.; Mostafavi, S.; Sachse, C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation. FEBS J. 2021, 288, 6927–6941. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Ye, L.; Huang, W.F.; Guo, L.J.; Xu, Z.G.; Wu, H.L.; Yang, C.; Liu, H.F. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett. 2016, 21, 29. [Google Scholar] [CrossRef]
- Lamark, T.; Svenning, S.; Johansen, T. Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem. 2017, 61, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mun, S.R.; Linares, J.F.; Towers, C.G.; Thorburn, A.; Diaz-Meco, M.T.; Kwon, Y.T.; Kutateladze, T.G. Mechanistic insight into the regulation of SQSTM1/p62. Autophagy 2019, 15, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.B.; Lamark, T.; Overvatn, A.; Harneshaug, I.; Johansen, T.; Bjorkoy, G. A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 2010, 6, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Pircs, K.; Nagy, P.; Varga, A.; Venkei, Z.; Erdi, B.; Hegedus, K.; Juhasz, G. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS ONE 2012, 7, e44214. [Google Scholar] [CrossRef]
- Benelli, G.; Wilke, A.B.B.; Beier, J.C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 2020, 36, 942–943. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Guo, X.; Cheng, P.; Wang, H.; Liu, L.; Zang, C.; Zhang, C.; Wang, X.; Zhou, G.; et al. Climate change and Aedes albopictus risks in China: Current impact and future projection. Infect. Dis. Poverty 2023, 12, 26. [Google Scholar] [CrossRef]
- Kumar, A.V.; Mills, J.; Lapierre, L.R. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Front. Cell Dev. Biol. 2022, 10, 793328. [Google Scholar] [CrossRef]
- Pujhari, S.; Heu, C.C.; Brustolin, M.; Johnson, R.M.; Kim, D.; Rasgon, J.L. Sindbis virus is suppressed in the yellow fever mosquito Aedes aegypti by Atg6/BECN1 (autophagy-related 6)-mediated activation of autophagy. Autophagy 2025, 1–11. [Google Scholar] [CrossRef]
- Dong, S.; Dimopoulos, G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat. Commun. 2023, 14, 5773. [Google Scholar] [CrossRef]
- Carré-Mlouka, A.; Gaumer, S.; Gay, P.; Petitjean, A.M.; Coulondre, C.; Dru, P.; Bras, F.; Dezélée, S.; Contamine, D. Control of Sigma Virus Multiplication by the ref(2)P Gene of Drosophila melanogaster: An in Vivo Study of the PB1 Domain of Ref(2)P. Genetics 2007, 176, 409–419. [Google Scholar] [CrossRef]
- Nezis, I.P.; Simonsen, A.; Sagona, A.P.; Finley, K.; Gaumer, S.; Contamine, D.; Rusten, T.E.; Stenmark, H.; Brech, A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 2008, 180, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, H.; Wei, C.; Xiang, Y.; Liang, X.; Phang, C.W.; Jiao, R. HDAC6 regulates lipid droplet turnover in response to nutrient deprivation via p62-mediated selective autophagy. J. Genet. Genomics 2019, 46, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, R.; Rana, A.; Walker, D.W. Upregulation of the Autophagy Adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-Aged Drosophila. Cell Rep. 2019, 28, 1029–1040.e5. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yan, X.; Yan, L.; Zhao, J.; Song, J.; Peng, R.; Yang, Y.; Peng, J.; Liu, K. Identification and Functional Analysis of Apoptotic Protease Activating Factor-1 (Apaf-1) from Spodoptera litura. Insects 2021, 12, 64. [Google Scholar] [CrossRef]
- Dai, Y.; Li, X.; Ding, J.; Liang, Z.; Guo, R.; Yi, T.; Zhu, Y.; Chen, S.; Liang, S.; Liu, W. Molecular and expression characterization of insulin-like signaling in development and metabolism of Aedes albopictus. Parasit. Vectors 2023, 16, 134. [Google Scholar] [CrossRef]
- Liu, W.Q.; Chen, S.Q.; Bai, H.Q.; Wei, Q.M.; Zhang, S.N.; Chen, C.; Zhu, Y.H.; Yi, T.W.; Guo, X.P.; Chen, S.Y.; et al. The Ras/ERK signaling pathway couples antimicrobial peptides to mediate resistance to dengue virus in Aedes mosquitoes. PLoS Negl. Trop. Dis. 2020, 14, e0008660. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, D.; Wang, Y.; Li, X.; Wang, S.; Liu, Q. Identification of AaAtg8 as a marker of autophagy and a functional autophagy-related protein in Aedes albopictus. PeerJ 2018, 6, e5988. [Google Scholar] [CrossRef]
- Brackney, D.E.; Correa, M.A.; Cozens, D.W. The impact of autophagy on arbovirus infection of mosquito cells. PLoS Negl. Trop. Dis. 2020, 14, e0007754. [Google Scholar] [CrossRef]
- Weng, S.C.; Shiao, S.H. The unfolded protein response modulates the autophagy-mediated egg production in the mosquito Aedes aegypti. Insect Mol. Biol. 2020, 29, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xu, H.; Li, H.; Feng, X.; Zhou, J.; Guo, R.; Liang, Z.; Ding, J.; Li, X.; Huang, Y.; et al. Identification and functional analysis of C-type lectin from mosquito Aedes albopictus in response to dengue virus infection. Parasit. Vectors 2024, 17, 375. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Li, L.; Sun, J.; Zhao, Y.; Wan, K.; Zhang, M.; Li, J.; Zhang, M.; Zhu, G.; Tang, J. Rahnella aquatilis Isolated from Aedes albopictus Impairs Mosquito Reproduction Capacity. Insects 2025, 16, 257. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, S.; Kang, D. Quantitative and qualitative analysis of autophagy flux using imaging. BMB Rep. 2020, 53, 241–247. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, T.; Hu, J.; Liu, Y.; Jin, S.; Wu, J.; Guan, X.; Cui, J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front. Microbiol. 2022, 13, 889693. [Google Scholar] [CrossRef]
- Cingolani, F.; Czaja, M.J. Regulation and Functions of Autophagic Lipolysis. Trends Endocrinol. Metab. 2016, 27, 696–705. [Google Scholar] [CrossRef]
- Dikic, I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017, 86, 193–224. [Google Scholar] [CrossRef]
- Tracy, K.; Baehrecke, E.H. The role of autophagy in Drosophila metamorphosis. Curr. Top. Dev. Biol. 2013, 103, 101–125. [Google Scholar] [CrossRef]
- DeVorkin, L.; Gorski, S.M. Genetic manipulation of autophagy in the Drosophila ovary. Cold Spring Harb. Protoc. 2014, 2014, 973–979. [Google Scholar] [CrossRef]
- Allen, E.A.; Baehrecke, E.H. Autophagy in animal development. Cell Death Differ. 2020, 27, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Filali-Mouncef, Y.; Hunter, C.; Roccio, F.; Zagkou, S.; Dupont, N.; Primard, C.; Proikas-Cezanne, T.; Reggiori, F. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy 2022, 18, 50–72. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, G.; Jabeen, S.; Landazuri Vinueza, J.; Ghosh Roy, S.; Lockshin, R.A.; Zakeri, Z. Zika virus triggers autophagy to exploit host lipid metabolism and drive viral replication. Cell Commun. Signal. 2023, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Smartt, C.T. Activation of the autophagy pathway decreases dengue virus infection in Aedes aegypti cells. Parasit. Vectors 2021, 14, 551. [Google Scholar] [CrossRef]
- Rogov, V.; Dotsch, V.; Johansen, T.; Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 2014, 53, 167–178. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Shahnazari, S.; Brech, A.; Lamark, T.; Johansen, T.; Brumell, J.H. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183, 5909–5916. [Google Scholar] [CrossRef]
- Carroll, B.; Otten, E.G.; Manni, D.; Stefanatos, R.; Menzies, F.M.; Smith, G.R.; Jurk, D.; Kenneth, N.; Wilkinson, S.; Passos, J.F.; et al. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat. Commun. 2018, 9, 256. [Google Scholar] [CrossRef]
- Bao, W.; Gu, Y.; Ta, L.; Wang, K.; Xu, Z. Induction of autophagy by the MG-132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF-7 cells. Mol. Med. Rep. 2016, 13, 796–804. [Google Scholar] [CrossRef]
- du Toit, A.; Hofmeyr, J.S.; Gniadek, T.J.; Loos, B. Measuring autophagosome flux. Autophagy 2018, 14, 1060–1071. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Huang, Y.; Liang, Z.; Feng, X.; Wang, N.; Wang, H.; Gao, S.; Li, H.; Liu, W.; Liang, S. Identification, Expression of AaSQSTM1 in Aedes albopictus and Its Autophagic Function Analysis. Insects 2025, 16, 994. https://doi.org/10.3390/insects16100994
Xu H, Huang Y, Liang Z, Feng X, Wang N, Wang H, Gao S, Li H, Liu W, Liang S. Identification, Expression of AaSQSTM1 in Aedes albopictus and Its Autophagic Function Analysis. Insects. 2025; 16(10):994. https://doi.org/10.3390/insects16100994
Chicago/Turabian StyleXu, Haodong, Yijia Huang, Zihan Liang, Xiao Feng, Nan Wang, Haojie Wang, Sheng Gao, Hongbo Li, Wenquan Liu, and Shaohui Liang. 2025. "Identification, Expression of AaSQSTM1 in Aedes albopictus and Its Autophagic Function Analysis" Insects 16, no. 10: 994. https://doi.org/10.3390/insects16100994
APA StyleXu, H., Huang, Y., Liang, Z., Feng, X., Wang, N., Wang, H., Gao, S., Li, H., Liu, W., & Liang, S. (2025). Identification, Expression of AaSQSTM1 in Aedes albopictus and Its Autophagic Function Analysis. Insects, 16(10), 994. https://doi.org/10.3390/insects16100994