Transgenerational Cold Acclimation and Contribution of Gut Bacteria in Spodoptera frugiperda
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Cold Acclimation
2.3. Survival of the Cold-Acclimated Adults Exposed to Cold Stress
2.4. Effect of Antibiotic Treatment on Fitness and Cold Acclimation
2.5. Effect of Cold Acclimation and Antibiotic Treatment on the Composition of Gut Bacteria
2.6. Statistics
3. Results
3.1. Effect of Cold Exposure on the Fitness of FAW
3.2. Effect of Cold Exposure and Antibiotic Ingestion on the Fitness of FAW
3.3. Effect of Antibiotics Feeding on the Composition of Bacteria in Different Life Stages
3.3.1. Sequencing and Quality Control
3.3.2. Diversity Indices of Bacterial ASVs
3.3.3. Taxonomy Assignment and Abundance Analysis
3.3.4. Functional Prediction
3.3.5. Differential Analysis and References-Based Functional Annotation on the Genus and Species Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zanne, A.E.; Flores-Moreno, H.; Powell, J.R.; Cornwell, W.K.; Dalling, J.W.; Austin, A.T.; Classen, A.T.; Eggleton, P.; Okada, K.-I.; Parr, C.L.; et al. Termite sensitivity to temperature affects global wood decay rates. Science 2022, 377, 1440–1443. [Google Scholar] [CrossRef]
- Müller, J.; Hothorn, T.; Yuan, Y.; Seibold, S.; Mitesser, O.; Rothacher, J.; Freund, J.; Wild, C.; Wolz, M.; Menzel, A. Weather explains the decline and rise of insect biomass over 34 years. Nature 2024, 628, 349–354. [Google Scholar] [CrossRef]
- Sorensen, J.G.; Kristensen, T.N.; Overgaard, J. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: Is it important for keeping up with climate change? Curr. Opin. Insect Sci. 2016, 17, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Rubalcaba, J.G.; Olalla-Tárraga, M.Á. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 2020, 89, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Abbas, A.; Gul, H.; Güncan, A.; Hafeez, M.; Gadratagi, B.-G.; Cicero, L.; Ramirez-Romero, R.; Desneux, N.; Li, Z. Insect resilience: Unraveling responses and adaptations to cold temperatures. J. Pest. Sci. 2024, 97, 1153–1169. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012, 90, 456–475. [Google Scholar] [CrossRef]
- Vatanparast, M.; Park, Y. Differential transcriptome analysis reveals genes related to low- and high-temperature stress in the fall armyworm, Spodoptera frugiperda. Front. Physiol. 2022, 12, 827077. [Google Scholar] [CrossRef]
- Purać, J.; Kojić, D.; Petri, E.; Popović, Ž.D.; Grubor-Lajšić, G.; Blagojević, D.P. Cold adaptation responses in insects and other arthropods: An “omics” approach. In Short Views on Insect Genomics and Proteomics: Insect Proteomics; Raman, C., Goldsmith, M.R., Agunbiade, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 2, pp. 89–112. [Google Scholar]
- Quan, P.Q.; Guo, P.L.; He, J.; Liu, X.D. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Mol. Ecol. 2024, 33, e17493. [Google Scholar] [CrossRef]
- Mpofu, P.; Cuthbert, R.N.; Machekano, H.; Nyamukondiwa, C. Transgenerational responses to heat and fasting acclimation in the Angoumois grain moth. J. Stored Prod. Res. 2022, 97, 101979. [Google Scholar] [CrossRef]
- Quan, P.Q.; Li, J.R.; Liu, X.D. Glucose dehydrogenases-mediated acclimation of an important rice pest to global warming. Int. J. Mol. Sci. 2023, 24, 10146. [Google Scholar] [CrossRef]
- Zhou, Z.-S.; Rasmann, S.; Li, M.; Guo, J.-Y.; Chen, H.-S.; Wan, F.-H. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles. PLoS ONE 2013, 8, e74760. [Google Scholar] [CrossRef]
- Powell, S.J.; Bale, J.S. Intergenerational acclimation in aphid overwintering. Ecol. Entomol. 2008, 33, 95–100. [Google Scholar] [CrossRef]
- Coleman, P.C.; Bale, J.S.; Hayward, S.A. Cross-generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blow fly Calliphora vicina. J. Exp. Biol. 2014, 217, 1454–1461. [Google Scholar] [CrossRef]
- Quan, P.Q.; Li, M.Z.; Wang, G.R.; Gu, L.L.; Liu, X.D. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genom. 2020, 21, 450. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.-L.; Li, M.-Z.; Wang, G.-R.; Liu, X.-D. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. J. Therm. Biol. 2019, 81, 103–109. [Google Scholar] [CrossRef]
- Verma, N.; Giri, S.K.; Singh, G.; Gill, R.; Kumar, A. Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene 2022, 29, 100351. [Google Scholar] [CrossRef]
- Bellinvia, S.; Johnston, P.R.; Reinhardt, K.; Otti, O. Bacterial communities of the reproductive organs of virgin and mated common bedbugs, Cimex lectularius. Ecol. Entomol. 2020, 45, 142–154. [Google Scholar] [CrossRef]
- Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef]
- Voirol, L.R.P.; Frago, E.; Kaltenpoth, M.; Hilker, M.; Fatouros, N.E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 2018, 9, 556. [Google Scholar] [CrossRef]
- Bar-Shmuel, N.; Behar, A.; Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 2020, 27, 392–403. [Google Scholar] [CrossRef]
- van den Bosch, T.J.M.; Welte, C.U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 2017, 10, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Florez, L.V.; Biedermann, P.H.W.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015, 32, 904–936. [Google Scholar] [CrossRef]
- Rowe, M.; Veerus, L.; Trosvik, P.; Buckling, A.; Pizzari, T. The reproductive microbiome: An emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation. Trends Ecol. Evol. 2021, 36, 98. [Google Scholar] [CrossRef] [PubMed]
- Akami, M.; Ren, X.M.; Qi, X.W.; Mansour, A.; Gao, B.L.; Cao, S.; Niu, C.Y. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol. 2019, 19, 229. [Google Scholar] [CrossRef]
- Noman, M.S.; Shi, G.; Liu, L.-J.; Li, Z.-H. Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera: Tephritidae). Insect Sci. 2021, 28, 363–376. [Google Scholar] [CrossRef]
- Rashid, M.A.; Andongma, A.A.; Dong, Y.C.; Ren, X.M.; Niu, C.Y. Effect of gut bacteria on fitness of the Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae). Symbiosis 2018, 76, 63–69. [Google Scholar] [CrossRef]
- Han, S.; Akhtar, M.R.; Xia, X. Functions and regulations of insect gut bacteria. Pest. Manag. Sci. 2024, 80, 4828–4840. [Google Scholar] [CrossRef]
- Henry, Y.; Colinet, H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Naturwissenschaften 2018, 105, 59. [Google Scholar] [CrossRef]
- Sepulveda, J.; Moeller, A.H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 2020, 11, 384. [Google Scholar] [CrossRef]
- Singh, P.; Haldhar, P.; Das, T.; Chaubey, G.; Gupta, M.K.; Kumar, B. Thermal stress and its effects on the gut microbiome of Parthenium beetles. Arch. Insect Biochem. 2025, 118, e70058. [Google Scholar] [CrossRef]
- Ferguson, L.V.; Dhakal, P.; Lebenzon, J.E.; Heinrichs, D.E.; Bucking, C.; Sinclair, B.J. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 2018, 32, 2357–2368. [Google Scholar] [CrossRef]
- Bosmans, L.; Pozo, M.I.; Verreth, C.; Crauwels, S.; Wäckers, F.; Jacquemyn, H.; Lievens, B. Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 2018, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, N.N.; Thorshauge, P.M.; Kristensen, T.N.; de Jonge, N.; Bahrndorff, S.; Kjeldal, H.; Nielsen, J.L. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dicksved, J.; Lundh, T.; Lindberg, J.E. Heat shock proteins: Intestinal gatekeepers that are influenced by dietary components and the gut microbiota. Pathogens 2014, 3, 187–210. [Google Scholar] [CrossRef]
- Russell, J.A.; Moran, N.A. Costs and benefits of symbiont infection in aphids: Variation among symbionts and across temperatures. Proc. Biol. Sci. 2006, 273, 603–610. [Google Scholar] [CrossRef]
- Raza, M.F.; Wang, Y.; Cai, Z.; Bai, S.; Yao, Z.; Awan, U.A.; Zhang, Z.; Zheng, W.; Zhang, H. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 2020, 16, e1008441. [Google Scholar] [CrossRef]
- Arango, R.A.; Bishell, A.B.; Ohno, K.M.; Shelton, T.G.; Schoville, S.D.; Carlos-Shanley, C. Seasonal shifts in gut microbiota and cold tolerance metrics in a northern population of Reticulitermes flavipes (Blattodea: Rhinotermitidae). Environ. Entomol. 2024, 53, 447–456. [Google Scholar] [CrossRef]
- Teets, N.M.; Denlinger, D.L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013, 38, 105–116. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Akutse, K.S.; Amalin, D.M.; Araj, S.-E.; Barrera, G.; Beltran, M.J.B.; Ben Fekih, I.; Calatayud, P.-A.; Cicero, L.; Cokola, M.C.; et al. Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda. Biol. Control 2024, 191, 105460. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Liu, J.; Xie, M.; Li, Y.H.; Yang, J.J.; Zhang, M.L.; Qiu, K. Observation on law of diffusion damage of Spodoptera frugiperdain in China in 2019. Plant Prot 2019, 45, 10–19. [Google Scholar] [CrossRef]
- Tambo, J.A.; Kansiime, M.K.; Mugambi, I.; Rwomushana, I.; Kenis, M.; Day, R.K.; Lamontagne-Godwin, J. Understanding smallholders’ responses to fall armyworm (Spodoptera frugiperda) invasion: Evidence from five African countries. Sci. Total Environ. 2020, 740, 140015. [Google Scholar] [CrossRef]
- Yang, X.; Wyckhuys, K.A.G.; Jia, X.; Nie, F.; Wu, K. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manag. 2021, 282, 111949. [Google Scholar] [CrossRef] [PubMed]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.A.; Day, R.; Desneux, N.; Harrison, R.D.; Kriticos, D.; Rwomushana, I.; van den Berg, J.; et al. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2023, 43, 187–241. [Google Scholar] [CrossRef]
- Mbande, A.; Mutamiswa, R.; Chidawanyika, F. Thermal tolerance in Spodoptera frugiperda: Influence of age, sex, and mating status. Sci. Afric 2023, 22, e01911. [Google Scholar] [CrossRef]
- Malekera, M.J.; Acharya, R.; Hwang, H.-S.; Lee, K.-Y. Effect of cold acclimation and rapid cold-hardening on the survival of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) under cold stress. J. Asia-Pac. Entomol. 2022, 25, 101862. [Google Scholar] [CrossRef]
- Phungula, S.M.; Krüger, K.; Nofemela, R.S.; Weldon, C.W. Developmental diet, life stage and thermal acclimation affect thermal tolerance of the fall armyworm, Spodoptera frugiperda. Physiol. Entomol. 2023, 48, 122–131. [Google Scholar] [CrossRef]
- Gichuhi, J.; Sevgan, S.; Khamis, F.; Van den Berg, J.; du Plessis, H.; Ekesi, S.; Herren, J.K. Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. Peerj 2020, 8, e8701. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Yu, H.; Fu, D.-Y.; Xu, J.; Yang, S.; Ye, H. Mating leads to a decline in the diversity of symbiotic microbiomes and promiscuity increased pathogen abundance in a moth. Front. Microbiol. 2022, 13, 878856. [Google Scholar] [CrossRef]
- Acevedo, F.E.; Peiffer, M.; Tan, C.W.; Stanley, B.A.; Stanley, A.; Wang, J.; Jones, A.G.; Hoover, K.; Rosa, C.; Luthe, D.; et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact. 2017, 30, 127–137. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhou, H.C.; Lai, Y.S.; Chen, Q.; Yu, X.Q.; Wang, X.Y. Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda. Front. Microbiol. 2021, 12, 727434. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, L.-Y.; Zhao, Q.-Y.; Fu, D.-Y.; Yu, H.; Xu, J.; Yang, S. Antibiotics ingestion altered the composition of gut microbes and affected the development and reproduction of the fall armyworm. J. Pest. Sci. 2024, 97, 2187–2201. [Google Scholar] [CrossRef]
- Wu, T.; Cao, D.-H.; Liu, Y.; Yu, H.; Fu, D.-Y.; Ye, H.; Xu, J. Mating-induced common and sex-specific behavioral, transcriptional changes in the moth fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) in laboratory. Insects 2023, 14, 209. [Google Scholar] [CrossRef]
- Dong, Q.-J.; Zhou, J.-C.; Zhu, K.-H.; Zhang, Z.-T.; Dong, H. A simple method for identifiying sexuality of Spodoptera frugiperda (J. E. Smith) pupae and adults. Plant Prot. 2019, 45, 96–98. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, L.; Noman, M.S.; Zeng, L.; Luo, M.; Li, Z. The influence of antibiotics on gut bacteria diversity associated with laboratory-reared Bactrocera dorsalis. Bull. Entomol. Res. 2019, 109, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Chen, Y.; Xu, N.; Liu, J.; Wang, J. Thermo-adaptive evolution of Corynebacterium glutamicum reveals the regulatory functions of fasR and hrcA in heat tolerance. Microb. Cell Fact. 2024, 23, 294. [Google Scholar] [CrossRef]
- Oide, S.; Gunji, W.; Moteki, Y.; Yamamoto, S.; Suda, M.; Jojima, T.; Yukawa, H.; Inui, M. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl. Environ. Microbal 2015, 81, 2284–2298. [Google Scholar] [CrossRef]
- Borker, S.S.; Thakur, A.; Kumar, S.; Kumari, S.; Kumar, R.; Kumar, S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genom. 2021, 22, 307. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Guan, B.; Hu, Y.; Li, X.; Zeng, J.; Ni, Y. Identification and characterization of a novel cold-adapted GH15 family trehalase from the psychrotolerant Microbacterium phyllosphaerae LW106. Fermentation 2022, 8, 471. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Li, Y.; Xie, B.-B.; Chen, X.-L.; Yao, Q.-Q.; Zhang, X.-Y.; Kempher Megan, L.; Zhou, J.; Oren, A.; Qin, Q.-L. Nascent genomic evolution and allopatric speciation of Myroides profundi D25 in its transition from land to ocean. mBio 2016, 7, e01946-15. [Google Scholar] [CrossRef] [PubMed]
- Kosiorek, K.; Grzesiak, J.; Gawor, J.; Sałańska, A.; Aleksandrzak-Piekarczyk, T. Polar-region soils as novel reservoir of lactic acid bacteria from the genus Carnobacterium. Int. J. Mol. Sci. 2024, 25, 9444. [Google Scholar] [CrossRef]
- Misra, S.; Dixit, V.K.; Mishra, S.K.; Chauhan, P.S. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann. Microbiol. 2019, 69, 419–434. [Google Scholar] [CrossRef]
- Qiao, J.; Zheng, L.; Lu, Z.; Meng, F.; Bie, X. Research on the biofilm formation of Staphylococcus aureus after cold stress. Microorganisms 2021, 9, 1534. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Xie, H.; Wang, Y.; Zhao, J.; Wang, L.; Wu, L. Unveiling cold Code: Acinetobacter calcoaceticus TY1′s adaptation strategies and applications in nitrogen treatment. Bioresour. Technol. 2024, 413, 131449. [Google Scholar] [CrossRef]
- Elshabrawy, M.M.; Labena, A.I.; Desouky, S.E.; Barghoth, M.G.; Azab, M.S. Detoxification of hexavalent chromium using biofilm forming Paenochrobactrum pullorum isolated from tannery wastewater effluents. Al-Azhar Bull. Sci. 2023, 34, 2. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, X.; Yang, F.; Jocelin, N.F.; Shang, Y.; Wang, Q.; Liu, Z.; Guo, Y. Effects of heat tolerance on the gut microbiota of Sarcophaga peregrina (Diptera: Sarcophagidae) and impacts on the life history traits. Parasite Vector 2023, 16, 364. [Google Scholar] [CrossRef]
- Al-Sa’ady, A.J. Antibiotic susceptibility and heavy metal tolerance pattern of Serratia marcescens isolated from soil and water. J. Bioremediat Biodegrad. 2012, 3, 7. [Google Scholar] [CrossRef]
- Du Plessis, H.; Schlemmer, M.-L.; Van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Chown, S.L.; Gaston, K.J. Body size variation in insects: A macroecological perspective. Biol. Rev. 2010, 85, 139–169. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Q. Body weight of the two sexes determines the occurrence of polyandry in a moth. Anim. Behav. 2020, 159, 13–19. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Z.; Gao, B.; Chen, M.; Fu, D.-Y.; Chen, P.; Liu, J.-H. Bodyweight-related polyandry in the tobacco cutworm moth Spodoptera litura. J. Insect Sci. 2019, 19, 9. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Q.-L.; Zhao, Q.-Y.; Xu, J.; Ye, H. Study of mate selection and fecundity of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2023, 66, 564–574. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, D.; Qi, F.; Hu, Q.; Zhang, Y.; Shi, L.; Liu, C. Influence of temperature on the development and reproduction of Galleria mellonella L. Biot. Resour. 2020, 42, 349–353. [Google Scholar] [CrossRef]
- Meuti, M.E.; Fyie, L.R.; Fiorta, M.; Denlinger, D.L. Trade-offs between winter survival and reproduction in female insects. Integr. Comp. Biol. 2024, 64, 1667–1678. [Google Scholar] [CrossRef]
- Jian, Y.Y.; Liu, J.; Wu, Q.L.; Ciren, Z.G.; Zeng, J. Investigation on winter breeding and over wintering areas of Spodoptera frugiperda in China. Plant Prot. 2021, 47, 212–217. [Google Scholar] [CrossRef]
- Perilla-Henao, L.M.; Casteel, C.L. Vector-borne bacterial plant pathogens: Interactions with Hemipteran insects and plants. Front. Plant Sci. 2016, 7, 1163. [Google Scholar] [CrossRef]
- Beck, J.J.; Vannette, R.L. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J. Agr. Food Chem. 2017, 65, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.Y.; Zhang, L.Y.; Fu, D.Y.; Xu, J.; Chen, P.; Ye, H. Lactobacillus spp. in the reproductive system of female moths and mating induced changes and possible transmission. BMC Microbiol. 2022, 22, 308. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Du, C.-M.; Shi, M.-R.; Feng, L.; Fu, D.-Y.; Xu, J.; Li, Y.-H. The diversity and function of intestinal microorganisms in four geographic Cephalcia chuxiongica (a pine defoliator) populations. J. Appl. Entomol. 2021, 145, 394–405. [Google Scholar] [CrossRef]
- Wang, A.; Yao, Z.; Zheng, W.; Zhang, H. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 2014, 9, e106988. [Google Scholar] [CrossRef]
- Wang, H.; Jin, L.; Zhang, H. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J. Appl. Microbiol. 2011, 110, 1390–1401. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhao, H.; Bie, X. The antibiotics resistance mechanism and pathogenicity of cold stressed Staphylococcus aureus. LWT 2020, 126, 109274. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Wang, T.; Sun, J.; Zhang, Y.; Ji, J.; Sun, X. Effects of acid, alkaline, cold, and heat environmental stresses on the antibiotic resistance of the Salmonella enterica serovar Typhimurium. Food Res. Int. 2021, 144, 110359. [Google Scholar] [CrossRef]
Taxonomy | Functional Annotation | Reference | |||
---|---|---|---|---|---|
Phylum | Family | Genus | Species | ||
Actinobacteriota | Corynebacteriaceae | Corynebacterium | C. stationis, C. variabile | Thermal and solvent stress tolerance | [61,62] |
Actinobacteriota | Micrococcaceae | Glutamicibacter | Cold-tolerant bacteria, cold adaptation | [63] | |
Actinobacteriota | Microbacteriaceae | Microbacterium | M. amylolyticum | Psychrotolerant; produce trehalose | [64] |
Bacteroidota | Flavobacteriaceae | Myroides | M. profundi | Cold-tolerant bacteria | [65] |
Firmicutes | Carnobacteriaceae | Carnobacterium | C. maltaromaticum | Psychrotrophic bacteria; antimicrobial properties | [66] |
Firmicutes | Staphylococcaceae | Jeotgalicoccus | Stress-tolerant bacteria | [67] | |
Firmicutes | Staphylococcaceae | Staphylococcus | Cold-tolerant bacteria, | [68] | |
Proteobacteria | Morganellaceae | Providencia | Promoting host fitness under stressful conditions | [37] | |
Proteobacteria | Moraxellaceae | Acinetobacter | A. gerneri | Cold-tolerant; produce unsaturated and medium-chain fatty acids, SOD and CAT | [69] |
Proteobacteria | Rhizobiaceae | Paenochrobactrum | Stress-tolerant bacteria; detoxification | [70] | |
Proteobacteria | Wohlfahrtiimonadaceae | Ignatzschineria | I. indica | Host temperature tolerance | [71] |
Proteobacteria | Yersiniaceae | Serratia | Stress-tolerant bacteria | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Yu, G.-Y.; Gao, W.; Mai, Y.-T.; Xu, J.; Fu, W.; Zhang, Z.-X. Transgenerational Cold Acclimation and Contribution of Gut Bacteria in Spodoptera frugiperda. Insects 2025, 16, 1052. https://doi.org/10.3390/insects16101052
Song Y, Yu G-Y, Gao W, Mai Y-T, Xu J, Fu W, Zhang Z-X. Transgenerational Cold Acclimation and Contribution of Gut Bacteria in Spodoptera frugiperda. Insects. 2025; 16(10):1052. https://doi.org/10.3390/insects16101052
Chicago/Turabian StyleSong, Yu, Guo-Yun Yu, Wei Gao, Yu-Tong Mai, Jin Xu, Wen Fu, and Zhi-Xiao Zhang. 2025. "Transgenerational Cold Acclimation and Contribution of Gut Bacteria in Spodoptera frugiperda" Insects 16, no. 10: 1052. https://doi.org/10.3390/insects16101052
APA StyleSong, Y., Yu, G.-Y., Gao, W., Mai, Y.-T., Xu, J., Fu, W., & Zhang, Z.-X. (2025). Transgenerational Cold Acclimation and Contribution of Gut Bacteria in Spodoptera frugiperda. Insects, 16(10), 1052. https://doi.org/10.3390/insects16101052