GIS-Based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Infestation Data
2.1.2. Pea Site Locations
2.2. Infestation–Distance–Correlation
2.3. Geographical Implications
2.3.1. Python Script
2.3.2. Buffer Zones
2.3.3. Risk Classes
2.3.4. Overlapping Buffer Zones
3. Results
3.1. Infestation–Distance–Correlation
- 1261 m = inner risk buffer, which is parameter b for all grain peas;
- 1560 m = middle risk buffer, which is parameter b for all grain peas plus standard error;
- 1825 m = outer risk buffer, which is parameter b for grain peas without insecticides plus standard error.
3.2. Geographical Implication
3.2.1. Risk Map
3.2.2. Planning Tool
4. Discussion
4.1. Infestation–Distance–Correlation
4.2. Geographical Calculations
4.3. Limitations
4.4. Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Reddy, P.P. Agro-Ecological Approaches to Pest Management for Sustainable Agriculture; Springer Singapore: Singapore, 2017; ISBN 978-981-10-4324-6. [Google Scholar]
- Wright, R.J. Evaluation of Crop Rotation for Control of Colorado Potato Beetles (Coleoptera: Chrysomelidae) in Commercial Potato Fields on Long Island. J. Econ. Entomol. 1984, 77, 1254–1259. [Google Scholar] [CrossRef]
- Stoner, K.A. Management of Insect Pests with Crop Rotation and Field Layout. In Crop Rotation on Organic Farms: A Planning Manual; Johnson, S.E., Mohler, C.L., Eds.; NRAES: Ithaca, NY, USA, 2009; pp. 41–43. ISBN 978-1-933395-21-0. [Google Scholar]
- Farooq, M.; Nawaz, A.; Nadeem, F. Crop Rotations, Fallowing, and Associated Environmental Benefits. In Oxford Research Encyclopedia of Environmental Science; Nadeem, F., Nawaz, A., Farooq, M., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 1–49. ISBN 9780199389414. [Google Scholar]
- Bahlai, C.A.; Xue, Y.; McCreary, C.M.; Schaafsma, A.W.; Hallett, R.H. Choosing Organic Pesticides over Synthetic Pesticides May Not Effectively Mitigate Environmental Risk in Soybeans. PLoS ONE 2010, 5, e11250. [Google Scholar] [CrossRef]
- Wood, T.J.; Goulson, D. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 2017, 24, 17285–17325. [Google Scholar] [CrossRef]
- Ferro, D.; Logan, J.; Voss, R.; Elkinton, J. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environ. Entomol. 1985, 14, 343–348. [Google Scholar] [CrossRef]
- Alyokhin, A.; Baker, M.; Mota-Sanchez, D.; Dively, G.; Grafius, E. Colorado potato beetle resistance to insecticides. Am. J. Pot Res 2008, 85, 395–413. [Google Scholar] [CrossRef]
- Stanković, S.; Kostic, M.; Sivcev, I.; Jankovic, S.; Kljajic, P.; Todorovic, G.; Radosav, J. Resistance of Colorado potato beetle (Coleoptera: Chrysomelidae) to neonicotinoids, pyrethroids and nereistoxins in Serbia. Rom. Biotechnol. Lett. 2012, 17, 7599–7609. [Google Scholar]
- Cutler, G.C.; Tolman, J.H.; Scott-dupree, C.D.; Harris, C.R. Resistance Potential of Colorado Potato Beetle (Coleoptera: Chrysomelidae) to Novaluron. J. Econ. Entomol. 2005, 98, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- BMEL. Nationaler Aktionsplan zur Nachhaltigen Anwendung von Pflanzenschutzmitteln; BMEL: Bonn, Germany, 2017. [Google Scholar]
- Weisz, R.; Smilowitz, Z.; Christ, B. Distance, Rotation, and Border Crops Affect Colorado Potato Beetle (Coleoptera: Chrysomelidae) Colonization and Population Density and Early Blight (Alternaria Solani) Severity in Rotated Potato Fields. J. Econ. Entomol. 1994, 87, 723–729. [Google Scholar] [CrossRef]
- Weisz, R.; Smilowitz, Z.; Fleischer, S. Evaluating Risk of Colorado Potato Beetle (Coleoptera: Chrysomelidae) Infestation as a Function of Migratory Distance. J. Econ. Entomol. 1996, 89, 435–441. [Google Scholar] [CrossRef]
- Sexson, D.L.; Wyman, J.A. Effect of Crop Rotation Distance on Population of Colorado Potato Beetle (Coleoptera: Chrysomelidae): Development of Areawide Colorado Potato Beetle Pest Management Strategies. J. Econ. Entomol. 2005, 98, 716–724. [Google Scholar] [CrossRef] [PubMed]
- French II, N.; Follett, P.; Nault, B.; Kennedy, G. Colonization of potato fields in eastern North Carolina by Colorado potato beetle. Entomol. Exp. Appl. 1993, 68, 247–256. [Google Scholar] [CrossRef]
- Boiteau, G.; PICKA, J.D.; Watmough, J. Potato Field Colonization by Low-Density Populations of Colorado Potato Beetle as a Function of Crop Rotation Distance. J. Econ. Entomol. 2008, 101, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Hough-Goldstein, J.; Whalen, J. Relationship Between Crop Rotation Distance From Previous Potatoes and Colonization and Population Density of Colorado Potato Beetle. J. Agric. Urban Entomol. 1996, 13, 293–300. [Google Scholar]
- Racca, P.; Kleinhenz, B.; Zeuner, T.; Keil, B.; Tschöpe, B.; Jung, J. Decision Support Systems in Agriculture: Administration of Weather Data, Use of Geographic Information Systems (GIS) and Validation Methods in Crop Protection Warning Service. In Efficient Decision Support Systems: Practice and Challenges-From Current to Future/Book 1; Jao, C., Ed.; InTech: London, UK, 2011; pp. 331–354. ISBN 978-953-308-65-7. [Google Scholar]
- GIS Applications in Agriculture, Volume Three: Invasive Species; Clay, S. (Ed.) CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781420078800. [Google Scholar]
- Capinera, J.L. Handbook of Vegetable Pests; Academic Press: San Diego, CA, USA, 2001; ISBN 9780080533261. [Google Scholar]
- Hoffmann, G.M.; Schmutterer, H. Parasitäre Krankheiten und Schädlinge an Landwirtschaftlichen Kulturpflanzen, 2nd ed.; Verlag Eugen Ulmer GmbH & Co.: Stuttgart, Germany, 1999; ISBN 9783800132072. [Google Scholar]
- Thöming, G.; Norli, H.R.; Saucke, H.; Knudsen, G.K. Pea plant volatiles guide host location behaviour in the pea moth. Arthropod-Plant Interact. 2014, 8, 109–122. [Google Scholar] [CrossRef]
- Thöming, G.; Pölitz, B.; Kühne, A.; Saucke, H. Risk assessment of pea moth Cydia nigricana infestation in organic green peas based on spatio-temporal distribution and phenology of the host plant. Agric. For. Entomol. 2011, 13, 121–130. [Google Scholar] [CrossRef]
- Huusela-Veistola, E.; Jauhiainen, L. Expansion of pea cropping increases the risk of pea moth (Cydia nigricana; Lep., Tortricidae) infestation. J. Appl. Entomol. 2006, 130, 142–149. [Google Scholar] [CrossRef]
- Riemer, N.; Schieler, M.; Saucke, H. The efficacy of spatio-temporal predictors in forecasting the risk of Cydia nigricana infestation. Entomol. Exp. Appl. 2024, 00, 1–10. [Google Scholar] [CrossRef]
- Umsetzung der EU-Agrarreform in Deutschland, BMEL (Ed.) Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2015.
- European Commission. CAP Explained—Direct Payments for Farmers 2015–2020. 2017. Available online: https://ec.europa.eu/agriculture/direct-support/direct-payments_en (accessed on 9 November 2021).
- Carrière, Y.; Ellswoth, P.C.; Dutilleul, P.; Ellers-Kirk, C.; Barkley, V.; Antilla, L. A GIS-based apporach for areawide pest management: The scales of Lygus hesperus movements to cotton from alfalfa, weeds, and cotton. Entomol. Exp. Appl. 2006, 118, 203–210. [Google Scholar] [CrossRef]
- Beckler, A.A.; French, B.; Wade; Chandler, L.D. Using GIS in Areawide Pest Management: A Case Study in South Dakota. Trans. GIS 2005, 9, 109–127. [Google Scholar] [CrossRef]
- Waldhoff, G.; Lussem, U.; Bareth, G. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 55–69. [Google Scholar] [CrossRef]
- Meroni, M.; d’Andrimont, R.; Vrieling, A.; Fasbender, D.; Lemoine, G.; Rembold, F.; Seguini, L.; Verhegghen, A. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sens. Environ. 2021, 253, 112232. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany, 2001. [Google Scholar]
- OneSoil. OneSoil Global Analytics. Available online: www.map.onesoil.ai (accessed on 11 November 2023).
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Beamish, A.L.; Anbuhl, L.; Behling, R.; Goncalves, R.; Lingenfelser, A.; Neelmeijer, J.; Rabe, D.; Scheffler, D.; Thiele, M.; Spengler, D. FERN.Lab: Bridging the gap between remote sensing academic research and society. Remote Sens. Appl. Soc. Environ. 2021, 24, 100641. [Google Scholar] [CrossRef]
- Neumann, C. Habitat sampler—A sampling algorithm for habitat type delineation in remote sensing imagery. Divers. Distrib. 2020, 26, 1752–1766. [Google Scholar] [CrossRef]
- ISIP e. V. ISIP—Informationssystem für die Integrierte Pflanzenproduktion. Available online: www.isip.de (accessed on 11 November 2023).
Federal State/Year | ST | SN | HE | Federal State/Year | SN | ||
---|---|---|---|---|---|---|---|
Grain peas | 2016 | 57/1 | 7/21 | 3/31 | Green peas | 2016 | 33/19 |
2017 | 50/3 | 4/15 | 14/44 | 2017 | 13/24 | ||
2018 | 32/9 | 2/9 | 11/34 | 2018 | 20/32 | ||
2019 | 2/6 | 0/15 | 2019 | 0/2 | |||
Subtotal | 139/13 | 15/51 | 28/124 | 66/77 | |||
Total | 152 | 66 | 152 | 143 |
Parameter | a | b | RMSE | R2 adjusted | |
---|---|---|---|---|---|
All grain peas | Estimate | 9.79 *** | 1260.70 *** | 9.10 | 0.05 |
SE | 0.92 | 299.45 | |||
Without insecticide treatment | Estimate | 12.85 *** | 1426.23 ** | 9.98 | 0.08 |
SE | 1.45 | 398.92 | |||
With insecticide treatment | Estimate | 8.13 *** | 619.05 ** | 7.41 | 0.07 |
SE | 1.09 | 187.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schieler, M.; Riemer, N.; Racca, P.; Kleinhenz, B.; Saucke, H.; Veith, M.; Meese, B. GIS-Based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data. Insects 2024, 15, 249. https://doi.org/10.3390/insects15040249
Schieler M, Riemer N, Racca P, Kleinhenz B, Saucke H, Veith M, Meese B. GIS-Based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data. Insects. 2024; 15(4):249. https://doi.org/10.3390/insects15040249
Chicago/Turabian StyleSchieler, Manuela, Natalia Riemer, Paolo Racca, Benno Kleinhenz, Helmut Saucke, Michael Veith, and Bernd Meese. 2024. "GIS-Based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data" Insects 15, no. 4: 249. https://doi.org/10.3390/insects15040249
APA StyleSchieler, M., Riemer, N., Racca, P., Kleinhenz, B., Saucke, H., Veith, M., & Meese, B. (2024). GIS-Based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data. Insects, 15(4), 249. https://doi.org/10.3390/insects15040249