Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Cover Crop Treatments and Experimental Design
2.3. Planting and Termination
2.4. Cash Crop Planting
2.5. Insect Colony
2.6. Artificial Diets
2.7. Field Experimental Design
2.8. Laboratory Experimental Design
2.9. Mass Gain
2.10. Time to Pupate
2.11. Pupal Mass and Pupal Length
2.12. Polyphenol Oxidase (PPO) Assay
2.13. Scanning Electron Microscopy
2.14. Epicuticular Wax
2.15. Statistical Analysis
3. Results
3.1. Mass Gains by Caterpillars from the Field Experiment
3.2. Mass Gains by Caterpillars from the Laboratory Experiment
3.3. Pupation Time
3.4. Pupal Mass
3.5. Pupal Length
3.6. Quantification of Polyphenol Oxidase (PPO)
3.7. Epicuticular Wax
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romdhane, S.; Spor, A.; Busset, H.; Falchetto, L.; Martin, J.; Bizouard, F.; Bru, D.; Breuil, M.-C.; Philippot, L.; Cordeau, S. Cover Crop Management Practices Rather Than Composition of Cover Crop Mixtures Affect Bacterial Communities in No-Till Agroecosystems. Front. Microbiol. 2019, 10, 1618. [Google Scholar] [CrossRef]
- Adetunji, A.; Ncube, B.; Mulidzi, A.; Lewu, F. Management Impact and Benefit of Cover Crops on Soil Quality: A Review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Kaur, J.; Chavana, J.; Soti, P.; Racelis, A.; Kariyat, R. Arbuscular Mycorrhizal Fungi (AMF) Influences Growth and Insect Community Dynamics in Sorghum-Sudangrass (Sorghum x Drummondii). Arthropod-Plant. Interact. 2020, 14, 301–315. [Google Scholar] [CrossRef]
- Martinez, L.; Soti, P.; Kaur, J.; Racelis, A.; Kariyat, R.R. Impact of Cover Crops on Insect Community Dynamics in Organic Farming. Agriculture 2020, 10, 209. [Google Scholar] [CrossRef]
- Soti, P.; Kariyat, R.; Racelis, A. Effective Farm Management Promotes Native AMF and Benefit Organic Farming Systems. Agric. Ecosyst. Environ. 2023, 342, 108240. [Google Scholar] [CrossRef]
- Nichols, V.; English, L.; Carlson, S.; Gailans, S.; Liebman, M. Effects of Long-Term Cover Cropping on Weed Seedbanks. Front. Agron. 2020, 2, 591091. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.R.; Claassen, M.M. Addition of Cover Crops Enhances No-Till Potential for Improving Soil Physical Properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1482. [Google Scholar] [CrossRef]
- Restovich, S.B.; Andriulo, A.E.; Portela, S.I. Cover Crop Mixtures Increase Ecosystem Multifunctionality in Summer Crop Rotations with Low N Fertilization. Agron. Sustain. Dev. 2022, 42, 19. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Meisinger, J.J.; Schomberg, H.H.; Liebig, M.A.; Kaspar, T.; Mitchell, J.; Reeves, W. Using Cover Crops and Cropping Systems for Nitrogen Management. In Advances in Nitrogen Management for Water Quality; USADA: Ankeny, IA, USA, 2010; pp. 231–282. [Google Scholar]
- Davidson-Lowe, E.; Ray, S.; Murrell, E.; Kaye, J.; Ali, J.G. Cover Crop Soil Legacies Alter Phytochemistry and Resistance to Fall Armyworm (Lepidoptera: Noctuidae) in Maize. Environ. Entomol. 2021, 50, 958–967. [Google Scholar] [CrossRef]
- Mutyambai, D.M.; Bass, E.; Luttermoser, T.; Poveda, K.; Midega, C.A.O.; Khan, Z.R.; Kessler, A. More Than “Push” and “Pull”? Plant-Soil Feedbacks of Maize Companion Cropping Increase Chemical Plant Defenses Against Herbivores. Front. Ecol. Evol. 2019, 7, 217. [Google Scholar] [CrossRef]
- Kaplan, I.; Pineda, A.; Bezemer, M. Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores. In Aboveground–Belowground Community Ecology; Ohgushi, T., Wurst, S., Johnson, S.N., Eds.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2018; Volume 234, pp. 319–343. ISBN 978-3-319-91613-2. [Google Scholar]
- Garba, I.I.; Bell, L.W.; Williams, A. Cover Crop Legacy Impacts on Soil Water and Nitrogen Dynamics, and on Subsequent Crop Yields in Drylands: A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 34. [Google Scholar] [CrossRef]
- Wunsch, E.M.; Bell, L.W.; Bell, M.J. Can Legumes Provide Greater Benefits than Millet as a Spring Cover Crop in Southern Queensland Farming Systems? Crop. Pasture Sci. 2017, 68, 746–759. [Google Scholar] [CrossRef]
- Jones, C.; Olson-Rutz, K.; Miller, P.; Zabinski, C. Cover Crop Management in Semi-Arid Regions: Effect on Soil and Cash Crop. Crops Soils 2020, 53, 42–51. [Google Scholar] [CrossRef]
- Aiken, R.M.; O’Brien, D.M.; Olson, B.L.; Murray, L. Replacing Fallow with Continuous Cropping Reduces Crop Water Productivity of Semi-arid Wheat. Agron. J. 2013, 105, 199–207. [Google Scholar] [CrossRef]
- Inveninato Carmona, G.; Delserone, L.M.; Nogueira Duarte Campos, J.; Ferreira de Almeida, T.; Vieira Branco Ozório, D.; David Betancurt Cardona, J.; Wright, R.; McMechan, A.J. Does Cover Crop Management Affect Arthropods in the Subsequent Corn and Soybean Crops in the United States? A Systematic Review. Ann. Entomol. Soc. Am. 2021, 114, 151–162. [Google Scholar] [CrossRef]
- Dunbar, M.W.; O’Neal, M.E.; Gassmann, A.J. Increased Risk of Insect Injury to Corn Following Rye Cover Crop. J. Econ. Entomol. 2016, 109, 1691–1697. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Bruce, A.; Beyene, Y.; Makumbi, D.; Gowda, M.; Asim, M.; Martinelli, S.; Head, G.P.; Parimi, S. Host Plant Resistance for Fall Armyworm Management in Maize: Relevance, Status and Prospects in Africa and Asia. Theor. Appl. Genet. 2022, 135, 3897–3916. [Google Scholar] [CrossRef]
- Paudel Timilsena, B.; Niassy, S.; Kimathi, E.; Abdel-Rahman, E.M.; Seidl-Adams, I.; Wamalwa, M.; Tonnang, H.E.Z.; Ekesi, S.; Hughes, D.P.; Rajotte, E.G.; et al. Potential Distribution of Fall Armyworm in Africa and beyond, Considering Climate Change and Irrigation Patterns. Sci. Rep. 2022, 12, 539. [Google Scholar] [CrossRef]
- Meagher, R.L.; Nagoshi, R.N.; Fleischer, S.J.; Westbrook, J.K.; Wright, D.L.; Morris, J.B.; Brown, J.T.; Rowley, A.J. Areawide Management of Fall Armyworm, Spodoptera Frugiperda (Lepidoptera: Noctuidae), Using Selected Cover Crop Plants. CABI Agric. Biosci. 2022, 3, 1. [Google Scholar] [CrossRef]
- Kumar, R.M.; Gadratagi, B.-G.; Paramesh, V.; Kumar, P.; Madivalar, Y.; Narayanappa, N.; Ullah, F. Sustainable Management of Invasive Fall Armyworm, Spodoptera Frugiperda. Agronomy 2022, 12, 2150. [Google Scholar] [CrossRef]
- Singh, S.; Kariyat, R.R. Exposure to Polyphenol-Rich Purple Corn Pericarp Extract Restricts Fall Armyworm (Spodoptera frugiperda) Growth. Plant. Signal. Behav. 2020, 15, 1784545. [Google Scholar] [CrossRef] [PubMed]
- Kariyat, R.R.; Raya, C.E.; Chavana, J.; Cantu, J.; Guzman, G.; Sasidharan, L. Feeding on Glandular and Non-Glandular Leaf Trichomes Negatively Affect Growth and Development in Tobacco Hornworm (Manduca sexta) Caterpillars. Arthropod-Plant. Interact. 2019, 13, 321–333. [Google Scholar] [CrossRef]
- Tayal, M.; Somavat, P.; Rodriguez, I.; Martinez, L.; Kariyat, R. Cascading Effects of Polyphenol-Rich Purple Corn Pericarp Extract on Pupal, Adult, and Offspring of Tobacco Hornworm (Manduca sexta L.). Commun. Integr. Biol. 2020, 13, 43–53. [Google Scholar] [CrossRef]
- Tayal, M.; Somavat, P.; Rodriguez, I.; Thomas, T.; Christoffersen, B.; Kariyat, R. Polyphenol-Rich Purple Corn Pericarp Extract Adversely Impacts Herbivore Growth and Development. Insects 2020, 11, 98. [Google Scholar] [CrossRef]
- Watts, S.; Kariyat, R.R. Are Epicuticular Waxes a Surface Defense Comparable to Trichomes? A Test Using Two Solanum Species and a Specialist Herbivore. Botany 2022, 101, 15–23. [Google Scholar] [CrossRef]
- Constabel, C.P.; Barbehenn, R. Defensive Roles of Polyphenol Oxidase in Plants. In Induced Plant Resistance to Herbivory; Springer: Berlin/Heidelberg, Germany, 2008; pp. 253–270. [Google Scholar]
- Watts, S.; Kaur, I.; Singh, S.; Jimenez, B.; Chavana, J.; Kariyat, R. Desktop Scanning Electron Microscopy in Plant–Insect Interactions Research: A Fast and Effective Way to Capture Electron Micrographs with Minimal Sample Preparation. Biol. Methods Protoc. 2022, 7, bpab020. [Google Scholar] [CrossRef]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; De Moraes, C.M.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef]
- Ingerslew, K.S.; Kaplan, I. Distantly Related Crops Are Not Better Rotation Partners for Tomato. J. Appl. Ecol. 2018, 55, 2506–2516. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Soil Fertility Management and Insect Pests: Harmonizing Soil and Plant Health in Agroecosystems. Soil Tillage Res. 2003, 72, 203–211. [Google Scholar] [CrossRef]
- Stratton, C.A.; Ray, S.; Bradley, B.A.; Kaye, J.P.; Ali, J.G.; Murrell, E.G. Nutrition vs Association: Plant Defenses Are Altered by Arbuscular Mycorrhizal Fungi Association Not by Nutritional Provisioning Alone. BMC Plant. Biol. 2022, 22, 400. [Google Scholar] [CrossRef]
- Kaur, J.; Kariyat, R. Role of Trichomes in Plant Stress Biology. In Evolutionary Ecology of Plant-Herbivore Interaction; Springer: Cham, Switzerland, 2020; pp. 15–35. [Google Scholar]
- Bernaola, L.; Butterfield, T.S.; Tai, T.H.; Stout, M.J. Epicuticular Wax Rice Mutants Show Reduced Resistance to Rice Water Weevil (Coleoptera: Curculionidae) and Fall Armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 2021, 50, 948–957. [Google Scholar] [CrossRef]
- Kaur, I.; Watts, S.; Raya, C.; Raya, J.; Kariyat, R. Surface Warfare: Plant Structural Defenses Challenge Caterpillar Feeding. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World; Marquis, R.J., Koptur, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–92. ISBN 978-3-030-86688-4. [Google Scholar]
- Meagher, R.L.; Nagoshi, R.N.; Stuhl, C.; Mitchell, E.R. Larval Development of Fall Armyworm (Lepidoptera: Noctuidae) on Different Cover Crop Plants. Fla. Entomol. 2004, 87, 454–460. [Google Scholar] [CrossRef]
- Anderson, P.; Hilker, M.; Löfqvist, J. Larval Diet Influence on Oviposition Behaviour in Spodoptera Littoralis. Entomol. Exp. Appl. 1995, 74, 71–82. [Google Scholar] [CrossRef]
- Singh, S.; Watts, S.; Kaur, I.; Rodriguez, I.; Ayala, J.; Rodriguez, D.; Martin, E.; Kariyat, R. Sex and Stress Modulate Pupal Defence Response in Tobacco Hornworm. Curr. Zool. 2022, zoac075. [Google Scholar] [CrossRef]
- Lindstedt, C.; Murphy, L.; Mappes, J. Antipredator Strategies of Pupae: How to Avoid Predation in an Immobile Life Stage? Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190069. [Google Scholar] [CrossRef]
- Kariyat, R.R.; Portman, S.L. Plant–Herbivore Interactions: Thinking beyond Larval Growth and Mortality. Am. J. Bot. 2016, 103, 789–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Field | Cover Crop Treatments | Crop Type | Seeding Rate (kg/ha) |
---|---|---|---|
Hunter | Sorghum sudangrass and cowpea | Grass and Legume | 2.3 + 5.4 |
Cemetery | Cowpea, sun hemp, and sorghum–sudangrass | Legume and Grass | 5.4 + 5.4 + 2.3 |
Mahac | Cowpea and radish | Legume and vegetable | 6.8 |
Field | Cash Crop | Crop Type | Seeding Rate (kg/ha) |
---|---|---|---|
Hunter | Sorghum | Grass | 2.3 |
Cemetery | Sorghum | Grass | 2.3 |
Mahac | Sorghum | Grass | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajemisin, A.; Racelis, A.; Kariyat, R. Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda). Insects 2023, 14, 177. https://doi.org/10.3390/insects14020177
Fajemisin A, Racelis A, Kariyat R. Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda). Insects. 2023; 14(2):177. https://doi.org/10.3390/insects14020177
Chicago/Turabian StyleFajemisin, Adegboyega, Alexis Racelis, and Rupesh Kariyat. 2023. "Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda)" Insects 14, no. 2: 177. https://doi.org/10.3390/insects14020177
APA StyleFajemisin, A., Racelis, A., & Kariyat, R. (2023). Cascading Effects of Cover Crops on the Subsequent Cash Crop Defense against the Polyphagous Herbivore Fall Armyworm (Spodoptera frugiperda). Insects, 14(2), 177. https://doi.org/10.3390/insects14020177