First Evidence of CpGV Resistance of Codling Moth in the USA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Viruses
2.2. Activity of CpGV Formulations on Codling Moth Larvae
3. Results and Discussion
3.1. Resistance Test of WA Colonies
3.2. Activity Test of CpGV Formulations to WA3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balaško, K.M.; Bažok, R.; Mikac, K.M.; Lemic, D.; Živković, P.I. Pest management challenges and control practices in codling moth: A review. Insects 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Jumean, Z.; Wood, C.; Gries, G. Frequency distribution of larval codling moth, Cydia pomonella L. aggregations on trees in unmanaged apple orchards of the Pacific Northwest. Environ. Entomol. 2009, 38, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Shapiro-Ilan, D.I.; Glenn, G.M. Post-application of anti-desiccant agents improves efficacy of entomopathogenic nematodes in formulated host cadavers or aqueous suspension against diapausing codling moth larvae (Lepidoptera: Tortricidae). Biocontrol. Sci. Technol. 2010, 20, 909–921. [Google Scholar] [CrossRef]
- Witzgall, P.; Stelinski, L.; Gut, L.; Thomson, D. Codling moth management and chemical ecology. Annu. Rev. Entomol. 2007, 53, 503–522. [Google Scholar] [CrossRef]
- Willett, M.J.; Neven, L.; Miller, C.E. The occurrence of codling moth in low latitude countries: Validation of pest distribution reports. Hort. Technol. 2009, 19, 633–637. [Google Scholar] [CrossRef]
- Pajač, I.; Pejić, I.; Barić, B. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae)—Major pest in apple production: An overview of its biology, resistance, genetic structure and control strategies. Agric. Conspec. Sci. 2011, 76, 87–92. [Google Scholar]
- Reyes, M.; Franck, P.; Charmillot, P.-J.; Ioriatti, C.; Olivares, J.; Pasqualini, E.; Sauphanor, B. Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Manag. Sci. 2007, 63, 890–902. [Google Scholar] [CrossRef]
- Reyes, M.; Franck, P.; Olivares, J.; Margaritopoulos, J.; Knight, A.; Sauphanor, B. Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2009, 99, 359–369. [Google Scholar] [CrossRef]
- Lacey, L.A.; Thomson, D.; Vincent, C.; Arthurs, S.P. Codling moth granulovirus: A comprehensive review. Biocontrol. Sci. Technol. 2008, 18, 639–663. [Google Scholar] [CrossRef]
- Pringle, K.L.; Eyles, D.K.; Brown, L. Trends in codling moth activity in apple orchards under mating disruption using pheromones in the Elgin area, Western Cape Province, South Africa. Afr. Entomol. 2003, 11, 65–75. [Google Scholar]
- Arthurs, S.P.; Lacey, L.A.; Miliczky, E.R. Evaluation of the codling moth granulovirus and spinosad for codling moth control and impact on non-target species in pear orchards. Biol. Control. 2007, 41, 99–109. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Zhang, R. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field. Sci. Rep. 2016, 6, 21081. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Becnel, J.J.; Krell, P.J.; van Oers, M.M.; Mowery, J.D.; Bauchan, G.R. ICTV Report Consortium, ICTV virus taxonomy profile: Baculoviridae. J. Gen. Virol. 2018, 99, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.T.; Falcon, L.A. Temporal events in the invasion of the codling moth, Cydia pomonella, by a granulosis virus: An electron microscope study. J. Invertebr. Pathol. 1987, 50, 85–105. [Google Scholar] [CrossRef]
- Steineke, S.B.; Jehle, J.A. Mathematical Modeling of the Population Dynamics of Genetically Modified Microorganisms Using Baculoviruses as an Example; Umweltbundesamt: Berlin, Germany, 2002; pp. 35–37. [Google Scholar]
- Huber, J. Western Europe. In Insect Viruses and Pest Management; Hunter-Fujita, F.R., Entwistle, P.F., Evans, H.F., Crook, N.E., Eds.; John Wiley & Sons, Inc.: New York, NY, USA; Chichester, UK, 1998; pp. 201–215. [Google Scholar]
- Huber, J.; Dickler, E. Codling moth granulosis virus: Its efficiency in the field in comparison with organophosphorus insecticides. J. Econ. Entomol. 1977, 70, 557–561. [Google Scholar] [CrossRef]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef]
- Arthurs, S.P.; Lacey, L.A. Field evaluation of commercial formulations of the codling moth granulovirus: Persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control. 2004, 31, 388–397. [Google Scholar] [CrossRef]
- Tanada, Y.A. Granulosis virus of codling moth, Carpocapsa pomenella (Linnaeus) (Olethreutidae, Lepidoptera). J. Insect Pathol. 1964, 6, 39–47. [Google Scholar]
- Fan, J.; Jehle, J.A.; Wennmann, J.T. Population structure of Cydia pomonella granulovirus isolates revealed by quantitative analysis of genetic variation. Virus Evol. 2021, 7, veaa073. [Google Scholar] [CrossRef]
- Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Zebitz, C.P.W.; Huber, J. Apfelwickler-Granulovirus: Erste Hinweise auf Unterschiede in der Empfindlichkeit lokaler Apfelwickler-Populationen. Nachrbl. Deut Pflanzenschutzd 2005, 57, 29–34. [Google Scholar]
- Asser-Kaiser, S.; Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Eberle, K.E.; Gund, N.A.; Reineke, A.; Zebitz, C.P.; Heckel, D.G.; Huber, J.; et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 2007, 317, 1916–1918. [Google Scholar] [CrossRef] [PubMed]
- Berling, M.; Blachere-Lopez, C.; Soubabere, O.; Lery, X.; Bonhomme, A.; Sauphanor, B.; Lopez-Ferber, M. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl. Environ. Microbiol. 2009, 75, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Zichová, T.; Falta, V.; Kocourek, F.; Stará, J. Difference in the susceptibility of codling moth populations to Cydia pomonella granulovirus in the Czech Republic. Horti. Sci. 2011, 38, 21–26. [Google Scholar] [CrossRef]
- Sauer, A.J.; Schulze-Bopp, S.; Fritsch, E.; Undorf-Spahn, K.; Jehle, J.A. A third type of resistance to Cydia pomonella granulovirus in codling moths shows a mixed Z-Linked and autosomal inheritance pattern. Appl. Environ. Microbiol. 2017, 83, e01036-17. [Google Scholar] [CrossRef] [PubMed]
- Siegwart, M.; Maugin, S.; Besse, S.; Lopez-Ferber, M.; Hinsberger, A.; Gauffre, B. Le carpocapse des pommes résiste au virus de la granulose. Phytoma 2020, 738, 45–50. [Google Scholar]
- Undorf-Spahn, K.; Fritsch, E.; Huber, J.; Kienzle, J.; Zebitz, C.P.; Jehle, J.A. High stability and no fitness costs of the resistance of codling moth to Cydia pomonella granulovirus (CpGV-M). J. Invertebr. Pathol. 2012, 111, 136–142. [Google Scholar] [CrossRef]
- Graillot, B.; Berling, M.; Blachere-Lopez, C.; Siegwart, M.; Besse, S.; Lopez-Ferber, M. Progressive adaptation of a CpGV isolate to codling moth populations resistant to CpGV-M. Viruses 2014, 6, 5135–5144. [Google Scholar] [CrossRef]
- Berling, M.; Rey, J.B.; Ondet, S.J.; Tallot, Y.; Soubabère, O.; Bonhomme, A.; Sauphanor, B.; Lopez-Ferber, M. Field trials of CpGV virus isolates overcoming resistance to CpGV-M. Virol. Sin. 2009, 24, 470. [Google Scholar] [CrossRef]
- 2019 Organic Survey-USDA. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Organics/ORGANICS.pdf (accessed on 22 October 2020).
- Ivaldi-Sender, C. Techniques simples pour un elevage permanent de la Tordeuse orientale, Grapholita molesta (Lepidoptera, Tortricidae) sur milieu artificiel. Ann. Zool. Ecol. Anim. 1974, 6, 337–343. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Schmitt, A.; Bisutti, I.L.; Ladurner, E.; Benuzzi, M.; Sauphanor, B.; Kienzle, J.; Zingg, D.; Undorf-Spahn, K.; Fritsch, E.; Huber, J.; et al. The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. J. Appl. Entomol. 2013, 137, 641–649. [Google Scholar] [CrossRef]
- Zingg, D.; Züger, M.; Bollhalder, F.; Andermatt, M. Use of resistance overcoming CpGV isolates and CpGV resistance situation of the codling moth in Europe seven years after the first discovery of resistance to CpGV-M. IOBC-WPRS Bull. 2011, 66, 401–404. [Google Scholar]
- Graillot, B.; Blachere-López, C.; Besse, S.; Siegwart, M.; López-Ferber, M. Importance of the host phenotype on the preservation of the genetic diversity in codling moth granulovirus. Viruses 2019, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Pitcairn, M.J.; Zalom, F.G.; Rice, R.E. Degree-day forecasting of generation time of Cydia pomonella (Lepidoptera: Tortricidae) populations in California. Environ. Entomol. 1992, 21, 441. [Google Scholar] [CrossRef]
Isolates | Genome Group 1 | USA (Product/Formulation) | Europe (Product/Formulation) |
---|---|---|---|
GV-0001 | A | Cyd-X® * | Madex® |
GV-0003 | A | Cyd-X HP® * | Madex Plus® |
GV-0014 | A | Madex HP® * | Madex Twin® |
GV-0006 | A + E | - | Madex Max® * |
GV-0015 | B | - | Madex Primo® * |
GV-0013 | B + E | - | Madex Top® * |
GV-0017 | A + B + E | Madex XLV® ** | Madex Duo® * |
CpGV-S | E | ViroSoft CP4® * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Jehle, J.A.; Rucker, A.; Nielsen, A.L. First Evidence of CpGV Resistance of Codling Moth in the USA. Insects 2022, 13, 533. https://doi.org/10.3390/insects13060533
Fan J, Jehle JA, Rucker A, Nielsen AL. First Evidence of CpGV Resistance of Codling Moth in the USA. Insects. 2022; 13(6):533. https://doi.org/10.3390/insects13060533
Chicago/Turabian StyleFan, Jiangbin, Johannes A. Jehle, Ann Rucker, and Anne L. Nielsen. 2022. "First Evidence of CpGV Resistance of Codling Moth in the USA" Insects 13, no. 6: 533. https://doi.org/10.3390/insects13060533