Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pre-Release Procedures: Handling, Packing and Shipping Conditions
3. Transportation of Sterilized Male Mosquitoes
4. Release of Sterilized Male Mosquitoes
4.1. Pupal Release
4.2. Adult Release by Human Walking
4.3. Adult Release by Vehicles
4.4. Adult Release by Drone
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otu, A.; Ebenso, B.; Etokidem, A.; Chukwuekezie, O. Dengue fever—An update review and implications for Nigeria, and similar countries. Afr. Health Sci. 2019, 19, 2000–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Chala, B.; Hamde, F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review. Front Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Special Programme for Research, Training in Tropical Diseases; World Health Organization; Department of Control of Neglected Tropical Diseases; Epidemic, & Pandemic Alert. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009; p. 59.
- South, A.; Lees, R.; Garrod, G.; Carson, J.; Malone, D.; Hastings, I. The role of windows of selection and windows of dominance in the evolution of insecticide resistance in human disease vectors. Evol. Appl. 2020, 13, 738–751. [Google Scholar] [CrossRef] [Green Version]
- Pang, T.; Mak, T.K.; Gubler, D.J. Prevention and control of dengue—The light at the end of the tunnel. Lancet Infect. Dis. 2017, 17, e79–e87. [Google Scholar] [CrossRef]
- Yu, Y.B.; Yang, H.L.; Lin, Z.; Yang, S.Y.; Zhang, L.M.; Gu, X.H.; Li, C.M.; Wang, X. Development and Area-wide application of biological control using the parasitoid Aphidius gifuensis against Myzus persicae in China. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 3–16. [Google Scholar]
- Knipling, E.F. The eradication of the screw-worm fly. Sci. Am. 1960, 203, 54–61. [Google Scholar] [CrossRef]
- Vreysen, M.J.; Saleh, K.M.; Ali, M.Y.; Abdulla, A.M.; Zhu, Z.-R.; Juma, K.G.; Dyck, V.A.; Msangi, A.R.; Mkonyi, P.A.; Feldmann, H.U. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J. Econ. Entomol. 2000, 93, 123–135. [Google Scholar] [CrossRef]
- Yosiaki, I.; Kakinohana, H.; Yamagishi, M.; Kohama, T. Eradication of the melon fly, Bactrocera cucurbitae, from Okinawa, Japan, by means of the sterile insect technique, with special emphasis on the role of basic studies. J. Asia Pac. Entomol. 2003, 6, 119–129. [Google Scholar]
- Bourtzis, K.; Braig, H.R.; Karr, T.L. Insect Symbiosis; CRC Press: Boca Raton, FL, USA, 2003; p. 226. [Google Scholar]
- Iturbe-Ormaetxe, I.; Walker, T.; O′Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Shaikevich, E.; Bogacheva, A.; Rakova, V.; Ganushkina, L.; Ilinsky, Y. Wolbachia symbionts in mosquitoes: Intra-and intersupergroup recombinations, horizontal transmission and evolution. Mol. Phylogenet. Evol. 2019, 134, 24–34. [Google Scholar] [CrossRef]
- Sinkins, S.P. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect. Biochem. Mol. Biol. 2004, 34, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Khoo, C.C.; Dobson, S.L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005, 310, 326–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, G.; Joshi, D.; Dong, Y.; Lu, P.; Zhou, G.; Pan, X.; Xu, Y.; Dimopoulos, G.; Xi, Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Caputo, B.; Moretti, R.; Manica, M.; Serini, P.; Lampazzi, E.; Bonanni, M.; Fabbri, G.; Pichler, V.; Della Torre, A.; Calvitti, M. A bacterium against the tiger: Preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area. Pest. Manag. Sci. 2020, 76, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Mains, J.W.; Brelsfoard, C.L.; Rose, R.I.; Dobson, S.L. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Mains, J.W.; Kelly, P.H.; Dobson, K.L.; Petrie, W.D.; Dobson, S.L. Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via inundative releases of Wolbachia-infected male mosquitoes. J. Med. Entomol. 2019, 56, 1296–1303. [Google Scholar] [CrossRef]
- Zhang, D.; Lees, R.S.; Xi, Z.; Gilles, J.R.; Bourtzis, K. Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS ONE 2015, 10, e0135194. [Google Scholar] [CrossRef]
- Kittayapong, P.; Kaeothaisong, N.-O.; Ninphanomchai, S.; Limohpasmanee, W. Combined sterile insect technique and incompatible insect technique: Sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors 2018, 11, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lees, R.S.; Xi, Z.; Bourtzis, K.; Gilles, J.R. Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions. PLoS ONE 2016, 11, e0151864. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon, P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.F.; Nimmo, D.; McKemey, A.R.; Kelly, N.; Scaife, S.; Donnelly, C.A.; Beech, C.; Petrie, W.D.; Alphey, L. Field performance of engineered male mosquitoes. Nat. Biotechnol. 2011, 29, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Gorman, K.; Young, J.; Pineda, L.; Márquez, R.; Sosa, N.; Bernal, D.; Torres, R.; Soto, Y.; Lacroix, R.; Naish, N. Short-term suppression of Aedes aegypti using genetic control does not facilitate Aedes albopictus. Pest Manag. Sci. 2016, 72, 618–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, D.O.; McKemey, A.R.; Garziera, L.; Lacroix, R.; Donnelly, C.A.; Alphey, L.; Malavasi, A.; Capurro, M.L. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0003864. [Google Scholar] [CrossRef] [Green Version]
- Helinski, M.E. Reproductive Biology and Induced Sterility as Determinants for Genetic Control of Mosquitoes with the Sterile Insect Technique; Wageningen University and Research: Wageningen, The Netherlands, 2008; p. 150. [Google Scholar]
- Hernández, E.; Escobar, A.; Bravo, B.; Montoya, P. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique. Neotrop. Entomol. 2010, 39, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Seck, M.T.; Pagabeleguem, S.; Bassene, M.D.; Fall, A.G.; Diouf, T.A.; Sall, B.; Vreysen, M.J.; Rayaisse, J.-B.; Takac, P.; Sidibe, I. Quality of sterile male tsetse after long distance transport as chilled, irradiated pupae. PLoS Negl. Trop. Dis. 2015, 9, e0004229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xi, Z.; Li, Y.; Wang, X.; Yamada, H.; Qiu, J.; Liang, Y.; Zhang, M.; Wu, Y.; Zheng, X. Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release. PLoS Negl. Trop. Dis. 2020, 14, e0008561. [Google Scholar] [CrossRef]
- Mosquito Handling, Transport, Release and Male Trapping Methods. Available online: https://www.iaea.org/projects/crp/d44002 (accessed on 26 February 2022).
- Lee, R.E., Jr.; Chen, C.-P.; Denlinger, D.L. A rapid cold-hardening process in insects. Science 1987, 238, 1415–1417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, D.; Li, Y.; Sun, Q.; Li, Q.; Fan, Y.; Wu, Y.; Xi, Z.; Zheng, X. Water-induced strong protection against acute exposure to low subzero temperature of adult Aedes albopictus. PLoS Negl. Trop. Dis. 2019, 13, e0007139. [Google Scholar] [CrossRef]
- Shelly, T.; Edu, J.; Nishimoto, J. Chilling and flight ability and mating competitiveness of sterile males of the Mediterranean fruit fly. J. Appl. Entomol. 2013, 137, 11–18. [Google Scholar] [CrossRef]
- Culbert, N.J.; Lees, R.S.; Vreysen, M.J.; Darby, A.C.; Gilles, J.R. Optimised conditions for handling and transport of male Anopheles arabiensis: Effects of low temperature, compaction, and ventilation on male quality. Entomol. Exp. Appl. 2017, 164, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Culbert, N.J.; Gilles, J.R.; Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 2019, 14, e0221822. [Google Scholar] [CrossRef] [PubMed]
- Iyaloo, D.P.; Facknath, S.; Bheecarry, A. Investigating the effects of low temperature and compaction on the quality of adult radio-sterilised Aedes albopictus (Diptera: Culicidae) males in view of their optimal transport to the pilot sterile release site in Mauritius. Int. J. Trop. Insect. Sci. 2020, 40, 53–62. [Google Scholar] [CrossRef]
- Chung, H.-N.; Rodriguez, S.D.; Gonzales, K.K.; Vulcan, J.; Cordova, J.J.; Mitra, S.; Adams, C.G.; Moses-Gonzales, N.; Tam, N.; Cluck, J.W. Toward implementation of mosquito sterile insect technique: The effect of storage conditions on survival of male Aedes aegypti mosquitoes (Diptera: Culicidae) during transport. J. Insect. Sci. 2018, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Balestrino, F.; Puggioli, A.; Carrieri, M.; Bouyer, J.; Bellini, R. Quality control methods for Aedes albopictus sterile male production. PLoS Negl. Trop. Dis. 2017, 11, e0005881. [Google Scholar] [CrossRef] [Green Version]
- Culbert, N.J.; Balestrino, F.; Dor, A.; Herranz, G.S.; Yamada, H.; Wallner, T.; Bouyer, J. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dor, A.; Maggiani-Aguilera, A.M.; Valle-Mora, J.; Bond, J.G.; Marina, C.F.; Liedo, P. Assessment of Aedes aegypti (Diptera: Culicidae) males flight ability for SIT application: Effect of device design, duration of test, and male Age. J. Med. Entomol. 2020, 57, 824–829. [Google Scholar] [CrossRef]
- Culbert, N.J.; Maiga, H.; Somda, N.S.B.; Gilles, J.R.L.; Bouyer, J.; Mamai, W. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasites Vectors 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Biotech, G.W. Methods for Eclosion Delaying and Transporting of Aedes albopictus Pupae. Chinese Patent CN107568202B, 11 September 2020. [Google Scholar]
- Sasmita, H.I.; Ernawan, B.; Sadar, M.; Nasution, I.A.; Indarwatmi, M.; Tu, W.-C.; Neoh, K.-B. Assessment of packing density and transportation effect on sterilized pupae and adult Aedes aegypti (Diptera: Culicidae) in non-chilled conditions. Acta Trop. 2022, 226, 106243. [Google Scholar] [CrossRef]
- Mastronikolos, G.D.; Kapranas, A.; Balatsos, G.K.; Ioannou, C.; Papachristos, D.P.; Milonas, P.G.; Puggioli, A.; Pajović, I.; Petrić, D.; Bellini, R. Quality control methods for Aedes albopictus sterile male transportation. Insects 2022, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyaloo, D.P.; Bouyer, J.; Facknath, S.; Bheecarry, A. Pilot Suppression trial of Aedes albopictus mosquitoes through an Integrated Vector Management strategy including the sterile insect technique in Mauritius. bioRxiv 2020. [Google Scholar] [CrossRef]
- Balatsos, G.; Puggioli, A.; Karras, V.; Lytra, I.; Mastronikolos, G.; Carrieri, M.; Papachristos, D.P.; Malfacini, M.; Stefopoulou, A.; Ioannou, C.S. Reduction in egg fertility of Aedes albopictus mosquitoes in Greece following releases of imported sterile males. Insects 2021, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Gato, R.; Menéndez, Z.; Prieto, E.; Argilés, R.; Rodríguez, M.; Baldoquín, W.; Hernández, Y.; Pérez, D.; Anaya, J.; Fuentes, I. Sterile Insect Technique: Successful suppression of an Aedes aegypti Field Population in Cuba. Insects 2021, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Martín-Park, A.; Che-Mendoza, A.; Contreras-Perera, Y.; Pérez-Carrillo, S.; Puerta-Guardo, H.; Villegas-Chim, J.; Guillermo-May, G.; Medina-Barreiro, A.; Delfín-González, H.; Méndez-Vales, R.; et al. Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl. Trop. Dis. 2022, 16, e0010324. [Google Scholar] [CrossRef]
- Harris, A.F.; McKemey, A.R.; Nimmo, D.; Curtis, Z.; Black, I.; Morgan, S.A.; Oviedo, M.N.; Lacroix, R.; Naish, N.; Morrison, N.I. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 2012, 30, 828–830. [Google Scholar] [CrossRef]
- Chadee, D.D.; Sutherland, J.M.; Gilles, J.R. Diel sugar feeding and reproductive behaviours of Aedes aegypti mosquitoes in Trinidad: With implications for mass release of sterile mosquitoes. Acta Trop. 2014, 132, S86–S90. [Google Scholar] [CrossRef]
- Bouyer, J.; Culbert, N.J.; Dicko, A.H.; Pacheco, M.G.; Virginio, J.; Pedrosa, M.; Garziera, L.; Pinto, A.M.; Klaptocz, A.; Germann, J. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 2020, 5, eaba6251. [Google Scholar] [CrossRef]
- Rasmussen, E. Drones against vector-borne diseases. Sci. Robot. 2020, 5, eabc7642. [Google Scholar] [CrossRef]
- Stanton, M.C.; Kalonde, P.; Zembere, K.; Spaans, R.H.; Jones, C.M. The application of drones for mosquito larval habitat identification in rural environments: A practical approach for malaria control? Malar J. 2021, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Escobar, G.; Manrique, E.; Ruiz-Cabrejos, J.; Saavedra, M.; Alava, F.; Bickersmith, S.; Prussing, C.; Vinetz, J.M.; Conn, J.E.; Moreno, M. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl. Trop. Dis. 2019, 13, e0007105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marina, C.F.; Liedo, P.; Bond, J.G.; Osorio, A.R.; Valle, J.; Angulo-Kladt, R.; Gómez-Simuta, Y.; Fernández-Salas, I.; Dor, A.; Williams, T. Comparison of ground release and drone-mediated aerial release of Aedes aegypti sterile males in southern Mexico: Efficacy and challenges. Insects 2022, 13, 347. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.G.; Vreysen, M.J.B.; Bouyer, J.; Calkins, C.O. Sterile insect quality control/assurance. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 399–440. [Google Scholar]
Strategy | Target Mosquito Species | Country | Size of the Control Area (ha) | Release Duration (Months) | Transport Conditions | Release | Suppression Efficiency |
---|---|---|---|---|---|---|---|
SIT | Ae. albopictus | Italy | 96 (total size in the five treated areas) | 14 | Pupae transport in plastic containers (12 cm diameter) by vehicles | Pupal release in plastic containers | Egg numbers, respectively, decreased 50.7%, 10.3%, 72.4% and 4.7% in four areas but increased 0.8% in one area [48] |
Ae. albopictus | Mauritius | 3 | 8 | 3-day-old adult transport of 2000 males/cage (30 × 30 × 30 cm) covered with wet towels by vans at ambient temperature | Adult release | Female numbers decreased 28.6% (Min) to 88.2% (Max) [49] | |
Ae. albopictus | Greece | 5 | 2 | Adult transport of 1000–1500 males/box by vehicles | Adult release by opening boxes while walking | Egg hatch rate decreased 40–84% without showing a decrease trend in egg numbers [50] | |
Ae. aegypti | Cuba | 50 | 5.5 | Pupae transport of 6000 males/cardboard box (15 × 15 × 60 cm) by vehicles | Adult release by opening boxes while vehicles moving | Egg numbers significantly decreased, and no viable eggs were collected for up to 6 weeks [51] | |
IIT | Ae. albopictus | USA (Kentucky) | 12.5 | 4.25 | Adult transport in cardboard mailing tubes (about 5 cm) | Adult release | Egg hatch rate and female numbers significantly decreased [18] |
Ae. albopictus | USA (Miami) | 68.8 | 5 | <48 h adult transport of 1000 males/tube (about 5 × 30 cm) via commercial courier in a cooler with moistened towel and a temperature sensor | Adult release | Egg hatch rate decreased 32–62%, and female numbers decreased 78% (Max) [19] | |
Ae. albopictus | Italy | 2.7 | 1.5 | 1–2-day-old adult transport of 750 males/cage by cars | Adult release | Maximum 16% difference was observed in egg hatch rate [17] | |
Ae. aegypti | USA (California) | 293 | 6.5 | Adult transport in release tubes (6-inch diameter) by cars | Adult release by automated release system | Female numbers decreased 95.5% [40] | |
Ae. aegypti | Mexico | 50 | 6 | Adult transport at 22 °C in plastic cylinder vases (2.8 L) by a van | Adult release by a team | Suppression efficacy was 90.9% a month after initiation of the suppression phase, 47.7% two months after, 61.4% four months after, 88.4% five months after and 89.4% at six months [52] | |
SIT–IIT | Ae. albopictus | China | 32.5 | 16–23 | Adult transport of 1000 males/release bucket (17 cm diameter × 17 cm height) by vans | Adult release in release bucket | Egg numbers decreased more than 94%, and female numbers decreased 83–94% [23] |
Ae. aegypti | Thailand | 65 | 6 | Pupae transport of 100 males/container by vehicles | Adult release | Egg hatch rate decreased 84%, and female numbers decreased 97.3% [24] | |
RIDL | Ae. aegypti | Cayman Islands | 103 | 5.75 | Pupae transport in release devices by vehicles | Pupal release and adult release | Larval numbers decreased 80% [53] |
Ae. aegypti | Brazil | 11 | 1.5 | Adult transport of 500–1000 males/release device (14 cm high × 13 cm diameter) by truck | Adult release by opening release devices on vehicles | Female numbers decreased 95% [27] | |
Ae. aegypti | Panama | 10 | 1 | Adults transport of 1000 males/pot (14 cm high × 13 cm diameter) in transport boxes by vehicles | Adult release by opening plastic container on vehicles | Female numbers of Ae. aegypti (target mosquito species) decreased 91–95% without affecting the abundance of Ae. albopictus [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zheng, X.; Zhang, D.; Wu, Y. Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique. Insects 2022, 13, 532. https://doi.org/10.3390/insects13060532
Guo J, Zheng X, Zhang D, Wu Y. Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique. Insects. 2022; 13(6):532. https://doi.org/10.3390/insects13060532
Chicago/Turabian StyleGuo, Jiatian, Xiaoying Zheng, Dongjing Zhang, and Yu Wu. 2022. "Current Status of Mosquito Handling, Transporting and Releasing in Frame of the Sterile Insect Technique" Insects 13, no. 6: 532. https://doi.org/10.3390/insects13060532