Overview of the Genetic Diversity of African Macrotermes (Termitidae: Macrotermitinae) and Implications for Taxonomy, Ecology and Food Science
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. DNA Sequence Analyses
3. Results and Discussion
3.1. Overview of the Genetic Diversity of African Macrotermes
3.1.1. Sequence Data for African Macrotermes Are Sparse and Unevenly Distributed
3.1.2. Sequences of African Macrotermes Fall into Three Main Clades and Seventeen Genetic Groups
Clade A: M. subhyalinus, M. jeanneli, M. michaelseni, M. natalensis, M. herus, and M. falciger
Clade B: M. lilljeborgi, M. muelleri, M. nobilis and M. vitrialatus
Clade C: M. bellicosus
3.2. Inference of Macrotermes Species in the New Sequences from South Africa
3.3. Mitochondrial Genetic Groups as A Background for Future Studies in African Macrotermes
3.4. Mitochondrial Markers for African Macrotermes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Figueirêdo, R.E.C.R.; Vasconcellos, A.; Policarpo, I.S.; Alves, R.R.N. Edible and medicinal termites: A global overview. J. Ethnobiol. Ethnomed. 2015, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, D.; Lepage, M.; Konaté, S.; Linsenmair, K.E. Ecosystem services of termites (Blattoidea: Termitoidae) in the traditional soil restoration and cropping system Zaï in northern Burkina Faso (West Africa). Agric. Ecosyst. Environ. 2017, 236, 198–211. [Google Scholar] [CrossRef]
- Kambhampati, S.; Eggleton, P. Taxonomy and phylogeny of termites. In Termites: Evolution, Sociality, Symbioses, Ecology, 1st ed.; Abe, T., Bignell, D.E., Higashi, M., Eds.; Springer International Publishing: New York, NY, USA, 2000; pp. 1–23. [Google Scholar]
- Noirot, C.; Darlington, J.P.E.C. Termite nests: Architecture, regulation and defence. In Termites: Evolution, Sociality, Symbioses, Ecology, 1st ed.; Abe, T., Bignell, D.E., Higashi, M., Eds.; Springer International Publishing: New York, NY, USA, 2000; pp. 121–139. [Google Scholar]
- Eggleton, P. An introduction to termites: Biology, taxonomy and functional morphology. In Biology of Termites: A Modern Synthesis, 1st ed.; Bignell, D.E., Roisin, Y., Lo, N., Eds.; Springer International Publishing: New York, NY, USA, 2011; pp. 1–26. [Google Scholar]
- Siulapwa, N.; Mwambungu, A.; Lungu, E.; Sichilima, W. Nutritional value of four common edible insects in Zambia. Int. J. Sci. Res. 2014, 3, 876–884. [Google Scholar]
- Séré, A.; Bougma, A.; Ouilly, J.T.; Traoré, M.; Sangaré, H.; Lykke, A.M.; Ouédraogo, A.; Gnankiné, O.; Bassolé, I.H.N. Traditional knowledge regarding edible insects in Burkina Faso. J. Ethnobiol. Ethnomed. 2018, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed 2015, 1, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Anankware, J.P.; Osekre, E.A.; Obeng-Ofori, D.; Khamala, C. Identification and classification of common edible insects in Ghana. Int. J. Entomol. Res. 2016, 1, 33–39. [Google Scholar]
- Ijeomah, H.M.; Oyebade, B.A.; Mazi, E.C. Utilization of edible winged termite (Macrotermes natalensis) in selected communities of Imo and Rivers States, Nigeria. Int. J. Sci. Eng. Res. 2015, 6, 919–940. [Google Scholar]
- Mabossy-Mobouna, G.; Latham, P.; Malaisse, F. Chemical aspects of human consumption of termites in Africa. Geo-Eco-Trop 2020, 1, 131–145. [Google Scholar]
- Alamu, T.O.; Amao, O.A.; Nwokedi, I.C.; Oke, A.O.; Lawa, O.I. Diversity and nutritional status of edible insects in Nigeria: A review. Int. J. Biodivers. Conserv. 2013, 5, 215–222. [Google Scholar]
- Sileshi, G.W.; Nyeko, P.; Nkunika, P.O.Y.; Sekematte, B.M.; Akinnifesi, F.K.; Ajayi, O.C. Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecol. Soc. 2009, 14, 48. [Google Scholar] [CrossRef]
- Fombong, F.T.; Kinyuru, J.N. Termites as Food in Africa. In Termites and Sustainable Management, 1st ed.; Khan, A., Ahmad, W., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 217–240. [Google Scholar]
- Netshifhefhe, S.R.; Kunjeku, E.C.; Duncan, F.D. Human uses and indigenous knowledge of edible termites in Vhembe District, Limpopo Province, South Africa. South Afr. J. Sci. 2018, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Netshifhefhe, S.R. The Effects of Different Land-Use Types on Edible Termite Biodiversity in the Vhembe District Municipality of Limpopo Province. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2018. [Google Scholar]
- Davies, A.B.; Brodrick, P.G.; Parr, C.L.; Asner, G.P. Resistance of mound-building termites to anthropogenic land-use change. Environ. Res. Lett. 2020, 15, 094738. [Google Scholar] [CrossRef]
- Dzerefos, C.M. Conservation of edible insects in sub-saharan Africa. In Edible Insects in Sustainable Food Systems, 1st ed.; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 181–197. [Google Scholar]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Indigenous knowledge about consumption of edible insects in South Africa. Insects 2021, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Akullo, J.; Obaa, B.B.; Acai, J.O.; Nakimbugwe, D.; Agea, J.G. Knowledge, attitudes and practices on edible insects in Lango sub-region, northern Uganda. J. Insects Food Feed 2017, 3, 73–81. [Google Scholar] [CrossRef]
- Van Huis, A. Cultural significance of termites in sub-Saharan Africa. J. Ethnobiol. Ethnomed. 2017, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, B. Culturally and Economically Significant Edible Insects in the Blouberg Region, Limpopo Province, South Africa. Ph.D. Thesis, University of Limpopo, Polokwane, South Africa, 2013. [Google Scholar]
- Green, M.R.; Sambrook, J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb. Protoc. 2017, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Longueville, J.E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anisimova, M.; Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Korb, J.; Kasseney, B.D.; Cakpo, Y.T.; Casalla Daza, R.H.; Gbenyedji, J.N.K.B.; Ilboudo, M.E.; Josens, G.; Koné, N.A.; Meusemann, K.; Ndiaye, A.B.; et al. Termite taxonomy, challenges and prospects: West Africa, a case example. Insects 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aanen, D.K.; Eggleton, P.; Rouland-Lefèvre, C.; Guldberg-Frøslev, T.; Rosendahl, S.; Boomsma, J.J. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. USA 2002, 99, 14887–14892. [Google Scholar] [CrossRef] [Green Version]
- Aanen, D.K.; Eggleton, P. Fungus-growing termites originated in African rain forest. Curr. Biol. 2005, 15, 851–855. [Google Scholar] [CrossRef] [Green Version]
- Nobre, T.; Eggleton, P.; Aanen, D.K. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc. R. Soc. B Biol. Sci. 2010, 277, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Nobre, T.; Koné, N.A.; Konaté, S.; Linsenmair, K.E.; Aanen, D.K. Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol. Ecol. 2011, 20, 2619–2627. [Google Scholar] [CrossRef]
- Brandl, R.; Hyodo, F.; Von Korff-Schmising, M.; Maekawa, K.; Miura, T.; Takematsu, Y.; Matsumoto, T.; Abe, T.; Bagine, R.; Kaib, M. Divergence times in the termite genus Macrotermes (Isoptera: Termitidae). Mol. Phylogenet. Evol. 2007, 45, 239–250. [Google Scholar] [CrossRef]
- Vesala, R.; Niskanen, T.; Liimatainen, K.; Boga, H.; Pellikka, P.; Rikkinen, J. Diversity of fungus-growing termites (Macrotermes) and their fungal symbionts (Termitomyces) in the semiarid Tsavo Ecosystem, Kenya. Biotropica 2017, 49, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Marten, A.; Kaib, M.; Brandl, R. Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). J. Chem. Ecol. 2009, 35, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Pekár, S.; Petráková Dušátková, L.; Haddad, C.R. No ontogenetic shift in the realised trophic niche but in Batesian mimicry in an ant-eating spider. Sci. Rep. 2020, 10, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourguignon, T.; Lo, N.; Sobotnik, J.; Ho, S.Y.W.; Iqbal, N.; Coissac, E.; Lee, M.; Jendryka, M.M.; Sillam-Dussès, D.; Krizkova, B.; et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 2017, 34, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Jiang, S.; Chen, X.; Lei, C. The complete mitochondrial genome of fungus-growing termite, Macrotermes natalensis (Isoptera: Macrotermitinae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016, 27, 1728–1729. [Google Scholar] [CrossRef] [PubMed]
- Hausberger, B.; Kimpel, D.; van Neer, A.; Korb, J. Uncovering cryptic species diversity of a termite community in a West African savanna. Mol. Phylogenet. Evol. 2011, 61, 964–969. [Google Scholar] [CrossRef]
- Ruelle, J.-E. A Revision of the Termites of the Genus Macrotermes from the Ethiopian Region (Isoptera: Termitidae); British Museum (Natural History): London, UK, 1970. [Google Scholar]
- Bagine, R.K.N.; Darlington, J.P.E.C.; Kat, P.; Ritchie, J.M. Nest structure, population structure and genetic differentiation of some morphologically similar species of Macrotermes in Kenya. Sociobiology 1989, 15, 125–132. [Google Scholar]
- Collins, R.A.; Cruickshank, R.H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 2013, 13, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Khamis, F.M.; Rwomushana, I.; Ombura, L.O.; Cook, G.; Mohamed, S.A.; Tanga, C.M.; Nderitu, P.W.; Borgemeister, C.; Sétamou, M.; Grout, T.G.; et al. DNA barcode reference library for the African Citrus Triozid, Trioza erytreae (Hemiptera: Triozidae): Vector of African Citrus Greening. J. Econ. Entomol. 2017, 110, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Ajene, I.; Khamis, F.; Pietersen, G.; van Asch, B. Mitochondrial genetic variation reveals phylogeographic structure and cryptic diversity in Trioza Erytreae. Sci. Rep. 2020, 10, 8893. [Google Scholar] [CrossRef] [PubMed]
- Moulton, M.J.; Song, H.; Whiting, M.F. Assessing the effects of primer specificity on eliminating NUMT coamplification in DNA barcoding: A case study from Orthoptera (Arthropoda: Insecta). Mol. Ecol. Resour. 2010, 10, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.; Van der Westhuizen, S.; Morland, G.; van Asch, B. Mitochondrial genomes and polymorphic regions of Gonimbrasia belina and Gynanisa maja (Lepidoptera: Saturniidae), two important edible caterpillars of Southern Africa. Int. J. Biol. Macromol. 2020, 144, 632–642. [Google Scholar] [CrossRef] [PubMed]
Specimen | Caste | Site | Collection Date | Municipality | Village | GPS Coordinates | |
---|---|---|---|---|---|---|---|
FT01 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT02 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT03 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT04 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT05 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT06 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT07 | Alate | House yard | 28-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
FT08 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT09 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT10 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT11 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT12 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT13 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT14 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
FT15 | Alate | House yard | 10-December-2020 | Giyani | Ka-Homu | −23.33400 | 30.77300 |
MF01 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF02 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF03 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF04 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF05 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF06 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF07 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF08 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF09 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF10 | Soldier/worker | Termite mound | 19-August-2020 | Tzaneen | Moleketla | −23.68000 | 30.28000 |
MF39 | Soldier/worker | Termite mound | 30-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
MF40 | Soldier/worker | Termite mound | 30-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
MF41 | Soldier/worker | Termite mound | 30-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
MF42 | Soldier/worker | Termite mound | 30-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
MF43 | Soldier/worker | Termite mound | 30-November-2020 | Thohoyandou | Lufule 2 | −22.96386 | 30.51733 |
MF49 | Soldier/worker | Termite mound | 14-February-2020 | Tzaneen | Ga-Mmamatsha | −24.012259 | 29.81153 |
MF50 | Soldier/worker | Termite mound | 14-February-2020 | Tzaneen | Ga-Mmamatsha | −24.012259 | 29.81153 |
MF51 | Soldier/worker | Termite mound | 14-February-2020 | Tzaneen | Ga-Mmamatsha | −24.012259 | 29.81153 |
MF52 | Soldier | Termite mound | 14-February-2020 | Tzaneen | Ga-Mmamatsha | −24.012259 | 29.81153 |
Species | Maximum p-Distance (%) | Mean p-Distance (%) | SE |
---|---|---|---|
Macrotermes bellicosus | 8.17 | 6.17 | 0.98 |
Macrotermes falciger | 4.44 | 0.54 | 0.20 |
Macrotermes herus | 4.46 | 2.04 | 0.47 |
Macrotermes jeanneli | 0.00 | 0.00 | 0.00 |
Macrotermes lilljeborgi | n.a. | n.a. | n.a. |
Macrotermes michaelseni | 0.22 | 0.00 | 0.00 |
Macrotermes muelleri | 1.08 | 1.41 | 0.54 |
Macrotermes natalensis | 3.72 | 2.04 | 0.54 |
Macrotermes nobilis | n.a. | n.a. | n.a. |
Macrotermes subhyalinus | 6.59 | 0.95 | 0.22 |
Macrotermes vitrialatus | n.a. | n.a. | n.a. |
Genetic group | |||
G1 | 0.55 | 0.03 | 0.01 |
G2 | 0.51 | 0.18 | 0.13 |
G3 | 0.33 | 0.04 | 0.03 |
G4 | 1.19 | 0.20 | 0.09 |
G5 | 0.00 | 0.00 | 0.00 |
G6 | 0.00 | 0.00 | 0.00 |
G7 | 2.15 | 0.67 | 0.25 |
G8 | 0.15 | 0.00 | 0.00 |
G9 | 0.00 | 0.00 | 0.00 |
G10 | 1.71 | 1.07 | 0.39 |
G11 | 1.50 | 0.40 | 0.12 |
G12 | n.a. | n.a. | n.a. |
G13 | n.a. | n.a. | n.a. |
G15 | 1.08 | 1.41 | 0.49 |
G14 | n.a. | n.a. | n.a. |
G16 | n.a. | n.a. | n.a. |
G17 | 0.11 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egan, B.; Nethavhani, Z.; van Asch, B. Overview of the Genetic Diversity of African Macrotermes (Termitidae: Macrotermitinae) and Implications for Taxonomy, Ecology and Food Science. Insects 2021, 12, 518. https://doi.org/10.3390/insects12060518
Egan B, Nethavhani Z, van Asch B. Overview of the Genetic Diversity of African Macrotermes (Termitidae: Macrotermitinae) and Implications for Taxonomy, Ecology and Food Science. Insects. 2021; 12(6):518. https://doi.org/10.3390/insects12060518
Chicago/Turabian StyleEgan, Bronwyn, Zwannda Nethavhani, and Barbara van Asch. 2021. "Overview of the Genetic Diversity of African Macrotermes (Termitidae: Macrotermitinae) and Implications for Taxonomy, Ecology and Food Science" Insects 12, no. 6: 518. https://doi.org/10.3390/insects12060518
APA StyleEgan, B., Nethavhani, Z., & van Asch, B. (2021). Overview of the Genetic Diversity of African Macrotermes (Termitidae: Macrotermitinae) and Implications for Taxonomy, Ecology and Food Science. Insects, 12(6), 518. https://doi.org/10.3390/insects12060518