Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Species Background
3. Materials and Methods
3.1. Study Area
3.2. Selection of Stands and Trees
3.3. Tree-Ring Preparation, Measurement, Crossdating, and Standardization
3.4. Reconstruction of Outbreaks History
3.4.1. Pointer Year Method
3.4.2. OUTBREAK Method
3.4.3. Mowing Window Method
3.4.4. Method of Independent Component Analysis
3.4.5. Optimization of Algorithms Parameters
3.5. Correspondence of Reconstruction Results
3.6. Climate and Outbreaks
4. Results
4.1. Tree-Ring Series Characteristics and Optimal Values of Outbreak Detection Parameters
4.2. Pine Looper Outbreaks Reconstruction
4.2.1. Zarech’e
4.2.2. Sokolovo
4.2.3. Lesnoye
4.3. Compliance of Reconstructions Obtained by PYM and Other Methods
4.3.1. OUTBREAK
4.3.2. Mowing Window Method
4.3.3. Method of Independent Component Analysis
4.4. Effects of Weather and Defoliation on Tree Ring Formation
5. Discussion
5.1. Pine Looper Outbreak Reconstruction
5.1.1. Comparison of Climate and Defoliation Contribution to Radial Growth
5.1.2. Consistency of Pointer Year Method Results with Historical Data
5.2. Consistency between Pointer Year Method and Other Algorithms of Outbreak Detection
5.2.1. Potential of Analyzed Algorithms in the Local Conditions
5.2.2. Source of Lags between Pointer Year Method and Other Algorithms
5.3. Possible Reasons for the Mismatch between the Values of the Arguments for OUTBREAK, MWM, and MICA in the Present Research and Previous Studies
5.3.1. Climate
5.3.2. Degree of Damage
5.3.3. Outbreak Control Measures
5.3.4. Insects and Trees Biology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palnikova, E.N.; Sviderskaya, I.V.; Soukhovolsky, V.G. The Pine Looper in Siberian Forests. Ecology, Population Dynamics, Impact on Forests; Nauka: Novosibirsk, Russia, 2002; ISBN 5-02-032018-8. [Google Scholar]
- Schwerdtfeger, F. Forstinsekten im Ur- und Nutzwald. Allgem. Forstzeitschrift 1957, 1–485. [Google Scholar]
- Klomp, H. The dynamics of field population of the Bupalus piniarius L. Adv. Ecol. Res. 1966, 207–306. [Google Scholar]
- Straw, N.A. The impact of pine looper moth, Bupalus piniaria L. (Lepidoptera; Geometridae) on the growth of Scots pine in Tentsmuir Forest, Scotland. For. Ecol. Manag. 1996, 87, 209–232. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Lynch, A.M. Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol. Monogr. 1993, 63, 399–424. [Google Scholar] [CrossRef]
- Speer, J.H.; Swetnam, T.W.; Wickman, B.E.; Youngblood, A. Changes in pandora moth outbreak dynamics during the past 622 years. Ecology 2001, 82, 679–697. [Google Scholar] [CrossRef]
- Kondakov, Y.P. The outbreaks patterns of Siberian silkmoth. In The Population Ecology of Siberian Forest Animals; Nauka: Novosibirsk, Russia, 1974; pp. 206–265. [Google Scholar]
- Tenow, O.; Nilssen, A.C.; Bylund, H.; Pettersson, R.; Battisti, A.; Bohn, U.; Caroulle, F.; Ciornei, C.; Csóka, G.; Delb, H.; et al. Geometrid outbreak waves travel across Europe. J. Anim. Ecol. 2013, 82, 84–95. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Wickman, B.E.; Gene, P.H.; Baisan, C.H. Historical Patterns of Western Spruce Budworm and Douglas-Fir Tussock Moth Outbreaks in the Northern Blue Mountains, Oregon, Since AD 1700; U.S. Department of Agriculture: Portland, OR, USA; Forest Service: Portland, OR, USA; Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Egorov, N.N. Some harmful insects population dynamics in the protective forests of the Altai Krai for the last 20 years (1930–1949 incl.). In Proceedings of the Second Ecological Conference on the Problem: Animals Outbreaks and Their Forecasts, Kiev, Ukraine, 29–30 September 1951; Report’s Thesis Part 3. Kiev State University Publishing House: Kiev, Ukraine, 1951; pp. 77–88. [Google Scholar]
- Isaev, A.S.; Khlebopros, R.G.; Nedorezov, L.V.; Kondakov, Y.P.; Kiselev, V.V.; Soukhovolsky, V.G. Population Dynamics of Forest Insects; Isaev, A.S., Ed.; Nauka: Moskow, Russia, 2001; ISBN 5-02-004270-6. [Google Scholar]
- Ryerson, D.E.; Swetnam, T.W.; Lynch, A.M. A tree-ring reconstruction of western spruce budworm outbreaks in the San Juan Mountains, Colorado, USA. Can. J. For. Res. 2003, 33, 1010–1028. [Google Scholar] [CrossRef]
- Esper, J.; Büntgen, U.; Frank, D.C.; Nievergelt, D.; Liebhold, A. 1200 Years of regular outbreaks in alpine insects. Proc. R. Soc. B Biol. Sci. 2007, 274, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, R.I.; Berg, J.; Axelson, J. Periodicity of western spruce budworm in Southern British Columbia, Canada. For. Ecol. Manag. 2014, 315, 72–79. [Google Scholar] [CrossRef]
- Cerrato, R.; Cherubini, P.; Büntgen, U.; Coppola, A.; Salvatore, M.C.; Baroni, C. Tree-ring-based reconstruction of larch budmoth outbreaks in the central Italian Alps since 1774 CE. IForest 2019, 12, 289–296. [Google Scholar] [CrossRef]
- Fan, Z.X.; Bräuning, A. Tree-ring evidence for the historical cyclic defoliator outbreaks on Larix potaninii in the central Hengduan Mountains, SW China. Ecol. Indic. 2017, 74, 160–171. [Google Scholar] [CrossRef]
- Kuminova, A.V. Principal Regularities of the Vegetation Distribution in the South-Eastern Part of the West-Siberian Lowlands. In Vegetation of the Steppe and Wood Steppe Zones of Western Siberia (the Novosibirsk Region and Altai Territory). Transactions of the CSBG. Issue 6; Kuminova, A.V., Ed.; Siberian Branch of the Academy of Sciences of the USSR: Novosibirsk, Russia, 1963; pp. 7–37. [Google Scholar]
- Humbert, L.; Kneeshaw, D. Identifying insect outbreaks: A comparison of a blind-source separation method with host vs non-host analyses. Forestry 2011, 84, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Pohl, K.A.; Hadley, K.S.; Arabas, K.B. Decoupling Tree-Ring Signatures of Climate Variation, Fire, and Insect Outbreaks in Central Oregon. Tree Ring Res. 2006, 62, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Dulamsuren, C.; Hauck, M.; Leuschner, H.H.; Leuschner, C. Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia 2010, 28, 207–213. [Google Scholar] [CrossRef]
- Carbone, M.S.; Czimczik, C.I.; Keenan, T.F.; Murakami, P.F.; Pederson, N.; Schaberg, P.G.; Xu, X.; Richardson, A.D. Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol. 2013, 200, 1145–1155. [Google Scholar] [CrossRef] [Green Version]
- Oberhuber, W.; Swidrak, I.; Pirkebner, D.; Gruber, A. Temporal dynamics of non-structural carbohydrates and xylem growth in Pinus sylvestris exposed to drought. Can. J. For. Res. 2011, 43, 1590–1597. [Google Scholar] [CrossRef] [Green Version]
- Vaganov, E.A.; Schulze, E.D.; Skomarkova, M.V.; Knohl, A.; Brand, W.A.; Roscher, C. Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 2009, 161, 729–745. [Google Scholar] [CrossRef] [Green Version]
- Arbellay, E.; Jarvis, I.; Chavardès, R.D.; Daniels, L.D.; Stoffel, M. Tree-ring proxies of larch bud moth defoliation: Latewood width and blue intensity are more precise than tree-ring width. Tree Physiol. 2018, 38, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- RIHMI-WDC. Available online: http://aisori.meteo.ru/ClspR (accessed on 15 October 2020).
- Cybis Dendrochronology. Home of CDendro & CooRecorder. Available online: http://cybis.se/forfun/dendro/index.php (accessed on 15 October 2020).
- Baillie, M.; Pilcher, J. A Simple Crossdating Program for Tree-Ring Research. Tree-ring Bull. 1973, 33, 7–14. [Google Scholar]
- Methods of Dendrochronology. Applications in the Environmental Sciences; Cook, E.R.; Kairiukstis, L.A. (Eds.) Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-94-015-7879-0. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 20 July 2020).
- Becker, M.; Nieminen, T.M.; Gérémia, F. Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann. des Sci. For. 1994, 51, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Jetschke, G.; van der Maaten, E.; van der Maaten-Theunissen, M. Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia 2019, 53, 55–62. [Google Scholar] [CrossRef]
- Paritsis, J.; Veblen, T.T.; Kitzberger, T. Assessing dendroecological methods to reconstruct defoliator outbreaks on Nothofagus pumilio in northwestern Patagonia, Argentina. Can. J. For. Res. 2009, 39, 1617–1629. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.; Liebhold, A.; Johnson, D.; Carrer, M.; Urbinati, C.; Grabner, M.; Nicolussi, K.; Levanic, T.; Esper, J. Three centuries of insect outbreaks across the European Alps. New Phytol. 2009, 182, 929–941. [Google Scholar] [CrossRef]
- Helwig, N.E. Ica: Independent Component Analysis. R Package Version 1.0-2. Available online: https://cran.r-project.org/web/packages/ica/ica.pdf (accessed on 10 October 2019).
- Castro-Conde, I.; De Uña-Álvarez, J. Sgof: An R package for multiple testing problems. R J. 2014, 6, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, I.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-84. Available online: https://cran.r-project.org/web/packages/caret/caret.pdf (accessed on 10 October 2019).
- Guiot, J.; Berger, A.L. Some New Mathematical Procedures in Dendroclimatology, with Examples from Switzerland and Morocco. Tree Ring Bull. 1982, 42, 33–48. [Google Scholar]
- Zang, C.; Biondi, F. Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia 2013, 31, 68–74. [Google Scholar] [CrossRef]
- Peters, R.L.; Klesse, S.; Fonti, P.; Frank, D.C. Contribution of climate vs. larch budmoth outbreaks in regulating biomass accumulation in high-elevation forests. For. Ecol. Manag. 2017, 401, 147–158. [Google Scholar] [CrossRef]
- Wilmking, M.; Buras, A.; Lehejček, J.; Lange, J.; Shetti, R.; van der Maaten, E. Influence of larval outbreaks on the climate reconstruction potential of an Arctic shrub. Dendrochronologia 2018, 49, 36–43. [Google Scholar] [CrossRef]
- Prendin, A.L.; Carrer, M.; Karami, M.; Hollesen, J.; Pedersen, N.B.; Pividori, M.; Treier, U.A.; Nielsen, A.W.; Elberling, B.; Normand, S. Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. J. Biogeogr. 2020, 47, 87–100. [Google Scholar] [CrossRef] [Green Version]
- The Rewiew of Forest Health in Russian Federation in 2009; Ministry of Agricultire of the Russian Federatioin: Pushkino, Russia; Federal Forestry Agency: Pushkino, Russia, 2010.
- Palnikova, E.N.; Soukhovolsky, V.G.; Tarasova, O. V Spatial-temporal coherency of forest insect phyllophages population dynamics. Euroasian Entomol. J. 2014, 13, 228–236. [Google Scholar]
- Monitoring, Registration and Forecasting of Pine- and Leaf-Chewing Insects Outbreaks in the USSR Forests; Ilyinsky, A.I.; Tropin, I.V. (Eds.) Lesnaya Promyshlennost: Moskow, Russia, 1965. [Google Scholar]
- Krause, C.; Gionest, F.; Morin, H.; MacLean, D.A. Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.). Dendrochronologia 2003, 21, 23–31. [Google Scholar] [CrossRef]
- Iqbal, J.; MacLean, D.A.; Kershaw, J.A. Balsam fir sawfly defoliation effects on survival and growth quantified from permanent plots and dendrochronology. Forestry 2011, 84, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Weber, U.M.; Schweingruber, F.H. A dendroecological reconstruction of western spruce budworm outbreaks (Choristoneura occidentalis) in the Front Range, Colorado, from 1720 to 1986. Trees 1995, 9, 204–213. [Google Scholar] [CrossRef]
- Myers, J.H. Synchrony in outbreaks of forest Lepidoptera: A possible example of the Moran effect. Ecology 1998, 79, 1111–1117. [Google Scholar] [CrossRef]
- Peltonen, M.; Liebhold, A.M.; Bjørnstad, O.N.; Williams, D.W. Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal. Ecology 2002, 83, 3120–3129. [Google Scholar] [CrossRef]
- Allstadt, A.J.; Liebhold, A.M.; Johnson, D.M.; Davis, R.E.; Haynes, K.J. Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics. Ecology 2015, 96, 2935–2946. [Google Scholar] [CrossRef] [Green Version]
- Kurkela, T.; Aalto, T.; Varama, M.; Jalkanen, R. Defoliation by the common pine sawfly (Diprion pini) and subsequent growth reduction in Scots pine: A retrospective approach. Silva. Fenn. 2005, 39, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Nealis, V.G.; Turnquist, R. Impact and recovery of western hemlock following disturbances by forestry and insect defoliation. For. Ecol. Manag. 2010, 260, 699–706. [Google Scholar] [CrossRef]
- Rolland, C.; Baltensweiler, W.; Petitcolas, V. The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: Dendrochronological estimates compared with insect surveys. Trees 2001, 15, 414–424. [Google Scholar] [CrossRef]
- Iqbal, J.; MacLean, D.A.; Kershaw, J.A. Impacts of hemlock looper defoliation on growth and survival of balsam fir, black spruce and white birch in Newfoundland, Canada. For. Ecol. Manag. 2011, 261, 1106–1114. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Wickman, B.E. Mortality and Growth Reduction of White Fir Following Defoliation by the Douglas-Fir Tussock Moth; US Forest Servise Research Papers; Pacific SW Forest & Range Experimental Station: Berkeley, CA, USA, 1963.
- Speer, J.H. A Dendrochronological Record of Pandora Moth (Coloradia Pandora, Blake) Outbreaks in Central Oregon; University of Arizona: Tucson, AZ, USA, 1997. [Google Scholar]
- Wickman, B.E.; Henshaw, D.L.; Gollob, S.K. Radial Growth in Grand Fir and Douglas-Fir Related to Defoliation by the Douglas-Fir Tussock Moth in the Blue Mountains Outbreak; USDA Forest Service: Portland, OR, USA; Pacific Northwest Forest and Range Experimental Station: Portland, OR, USA, 1980.
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Lyamtsev, N.I. Influence of Leaf-Eating Insects on Oak Increment in Sprout Oak Forests. Russ. J. For. Sci. 1995, 23–33. [Google Scholar]
- Muzika, R.M.; Liebhold, A.M. Changes in radial increment of host and nonhost tree species with gypsy moth defoliation. Can. J. For. Res. 1999, 29, 1365–1373. [Google Scholar] [CrossRef]
- Baltensweiler, W.; Fischlin, A. The Larch Budmoth in the Alps. In Dynamics of Forest Insect Populations. Patterns, Causes, Implications; Berryman, A.A., Ed.; Population Ecology: Theory and Application; Springer: Boston, MA, USA, 1988; pp. 331–351. ISBN 978-1-4899-0789-9. [Google Scholar]
Site | Coordinates | Relative Density | Number of Trees | Number of Cores |
---|---|---|---|---|
Zarech’e | 52.51° N, 85.27° E | 0.8 | 25 | 38 |
Sokolovo | 52.51° N, 84.75° E | 0.9 | 18 | 36 |
Lesnoye | 52.48° N, 85.25° E | 0.6 | 15 | 16 |
OUTBREAK, MWM, MICA | |||
---|---|---|---|
Positive Result | Negative Result | ||
PYM | Positive result | A | B |
Negative result | C | D |
Site | Earliest Year | Latest Year | Mean Age | Mean First-Order Autocorrelation | EPS | SNR |
---|---|---|---|---|---|---|
Zarech’e | 1944 | 2013 | 72 | 0.808 | 0.975 | 38.219 |
Sokolovo | 1914 | 2013 | 111 | 0.816 | 0.960 | 24.172 |
Lesnoye | 1938 | 2017 | 118 | 0.778 | 0.968 | 30.494 |
Site | PYM | MWM | OUTBREAK | MICA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
change.l | sync.l | change.e | sync.e | width | perc | std | lng | abrupt | lim | lng | q | rng | |
Zarech’e | 10 | 55 | 10 | 55 | 3 | 0.35 | 0.6 | 2 | 0.8 | −1.3 | 3 | 0.2 | 2 |
Sokolovo | 10 | 50 | 10 | 50 | 4 | 0.25 | 0.5 | 2 | 0.8 | −0.8 | 2 | 0.2 | 2 |
Lesnoye | 15 | 55 | 10 | 65 | 3 | 0.30 | 0.5 | 2 | 0.8 | −0.9 | 2 | 0.1 | 4 |
Site | Contingency Parameters | OUTBREAK | MWM | MICA |
---|---|---|---|---|
Zarech’e | F | p < 0.001 | p = 0.009 | p < 0.001 |
acc | 0.952 | 0.857 | 0.926 | |
sens | 1.000 | 0.714 | 0.800 | |
spec | 0.943 | 0.886 | 1.000 | |
Sokolovo | F | p < 0.001 | p < 0.001 | p < 0.001 |
acc | 0.937 | 0.905 | 0.921 | |
sens | 0.778 | 1.000 | 0.556 | |
spec | 0.963 | 0.889 | 0.981 | |
Lesnoye | F | p < 0.001 | p = 0.141 | p = 0.111 |
acc | 0.900 | 0.817 | 0.912 | |
sens | 1.000 | 0.600 | 0.400 | |
spec | 0.891 | 0.836 | 0.962 |
Model | Site | Selected Variables (Coefficients) | ||||||
---|---|---|---|---|---|---|---|---|
Weather | Zarech’e | TJUL (−0.0189) | PJUN (0.0015) | Pjan (−0.0028) | Psep (0.0021) | 0.395 | ||
Sokolovo | Tjan (−0.0091) | PMAY (0.0017) | 0.211 | |||||
Lesnoye | TJUL (−0.0232) | TAUG (−0.0279) | Psep (0.0018) | PMAY (0.0024) | PJUL (0.0018) | 0.444 | ||
Weather/outbreak | Zarech’e | TJUL (−0.0163) | PJUN (0.0014) | Pjan (−0.0016) | Psep (0.0021) | O (−0.1879) | 0.533 | |
Sokolovo | Tjan (−0.0086) | PMAY (0.0015) | O (−0.1871) | 0.405 | ||||
Lesnoye | TAUG (−0.0202) | Psep (0.0020) | PMAY (0.0025) | PJUL (0.0019) | O (−0.1899) | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demidko, D.A.; Trefilova, O.V.; Kulakov, S.S.; Mikhaylov, P.V. Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia. Insects 2021, 12, 90. https://doi.org/10.3390/insects12020090
Demidko DA, Trefilova OV, Kulakov SS, Mikhaylov PV. Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia. Insects. 2021; 12(2):90. https://doi.org/10.3390/insects12020090
Chicago/Turabian StyleDemidko, Denis A., Olga V. Trefilova, Sergey S. Kulakov, and Pavel V. Mikhaylov. 2021. "Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia" Insects 12, no. 2: 90. https://doi.org/10.3390/insects12020090
APA StyleDemidko, D. A., Trefilova, O. V., Kulakov, S. S., & Mikhaylov, P. V. (2021). Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia. Insects, 12(2), 90. https://doi.org/10.3390/insects12020090