Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years
Abstract
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Sampling Information
2.2. DNA Extraction
2.3. Single-Nucleotide Polymorphisms
2.4. mtDNA
2.5. Microsatellites
2.6. Genetic Diversity and Population Differentiation
2.7. Demographic Inferences
3. Results
3.1. Single-Nucleotide Polymorphisms
3.2. mtDNA
3.3. Microsatellites
3.4. Demographic Inferences
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
Additional Information
References
- Luikart, G.; England, P.R.; Tallmon, D.; Jordan, S.; Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 2003, 4, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M. Genome-Wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Poland, J.; Brown, P.J.; Sorrells, M.E.; Jannink, J.-L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P.; Gompert, Z.; Farkas, T.E.; Comeault, A.A.; Feder, J.L.; Buerkle, C.A.; Parchman, T.L. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B Biol. Sci. 2012, 279, 5058–5065. [Google Scholar] [CrossRef]
- Gompert, Z.; Comeault, A.A.; Farkas, T.E.; Feder, J.L.; Parchman, T.L.; Buerkle, C.A.; Nosil, P. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 2013, 17, 369–379. [Google Scholar] [CrossRef]
- Lozier, J.D. Revisiting comparisons of genetic diversity in stable and declining species: Assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol. Ecol. 2014, 23, 788–801. [Google Scholar] [CrossRef]
- Silva-Brandão, K.L.; E Silva, O.A.B.N.; Brandão, M.M.; Omoto, C.; Sperling, F.A. Genotyping-By-Sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae). Evol. Appl. 2015, 8, 476–485. [Google Scholar] [CrossRef]
- Silva-Brandão, K.L.; Peruchi, A.; Seraphim, N.; Murad, N.F.; Carvalho, R.A.; Farias, J.R.; Omoto, C.; Cônsoli, F.L.; Figueira, A.; Brandão, M.M. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae). PLoS ONE 2018, 13, e0197378. [Google Scholar] [CrossRef]
- Anderson, C.; Tay, W.T.; McGaughran, A.; Gordon, K.H.; Walsh, T. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 2016, 25, 5296–5311. [Google Scholar] [CrossRef] [PubMed]
- Wachi, N.; Matsubayashi, K.W.; Maeto, K. Application of next-generation sequencing to the study of non-model insects. Entomol. Sci. 2017, 21, 3–11. [Google Scholar] [CrossRef]
- Habel, J.C.; Husemann, M.; Finger, A.; Danley, P.D.; Zachos, F.E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 2013, 89, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Nunziata, S.O.; Weisrock, D.W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 2017, 120, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Nunziata, S.O.; Lance, S.L.; Scott, D.; Lemmon, E.M.; Weisrock, D.W. Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species. Mol. Ecol. 2017, 26, 1060–1074. [Google Scholar] [CrossRef] [PubMed]
- Owings, C.G.; Spiegelman, C.; Tarone, A.M.; Tomberlin, J.K. Developmental variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int. J. Leg. Med. 2014, 128, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.H.; Papavero, N.; Prado, Â.P.D. As miíases na região neotropical (identificação, biologia, bibliografia). Rev. Bras. Zool. 1982, 1, 239–416. [Google Scholar] [CrossRef]
- Adams, T.S. The Reproductive Physiology of the Screwworm, Cochliomyia Hominivorax (Diptera: Calliphoridae) II. Effect of constant temperatures on oogenesis. J. Med. Entomol. 1979, 15, 484–487. [Google Scholar] [CrossRef]
- Wyss, J.H. Screwworm Eradication in the Americas. Ann. N. Y. Acad. Sci. 2000, 916, 186–193. [Google Scholar] [CrossRef]
- Vargas-Terán, M.; Hofmann, H.C.; Tweddle, N.E. Impact of Screwworm Eradication Programmes Using the Sterile Insect Technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2005; pp. 629–650. [Google Scholar]
- Bergamo, L.W.; Fresia, P.; Azeredo-Espin, A.M.L. Phylogeography and Insecticide Resistance in the NWS in South America and Caribbean Regions. In Area-Wide Integrated Pest Management: Development and Field Application; Hendrichs, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, in press.
- Lyra, M.L.; Klaczko, L.B.; Azeredo-Espin, A.M.L. Complex patterns of genetic variability in populations of the New World screwworm fly revealed by mitochondrial DNA markers. Med. Veter. Entomol. 2009, 23, 32–42. [Google Scholar] [CrossRef]
- Fresia, P.; Lyra, M.L.; Coronado, A.; De Azeredo-Espin, A.M.L. Genetic structure and demographic history of new world screwworm across its current geographic range. J. Med. Entomol. 2011, 48, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Lyra, M.L.; Fresia, P.; Gama, S.; Cristina, J.; Klaczko, L.B.; de Azeredo-Espin, A.M.L. Analysis of Mitochondrial DNA Variability and Genetic Structure in Populations of New World Screwworm Flies (Diptera: Calliphoridae) from Uruguay. J. Med. Entomol. 2005, 42, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Torres, T.T.; Lyra, M.L.; Fresia, P.; Azeredo-Espin, A.M.L. Assessing Genetic Variation in New World Screwworm Cochliomyia Hominivorax Populations from Uruguay. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 183–191. [Google Scholar]
- Bergamo, L.W.; Fresia, P.; Azeredo-Espin, A.M.L. Incongruent Nuclear and Mitochondrial Genetic Structure of New World Screwworm Fly Populations Due to Positive Selection of Mutations Associated with Dimethyl- and Diethyl-Organophosphates Resistance. PLoS ONE 2015, 10, e0128441. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, L.W.; Fresia, P.; Lyra, M.L.; Azeredo-Espin, A.M.L. High Genetic Diversity and No Population Structure of the New World Screwworm Fly Cochliomyia hominivorax (Diptera: Calliphoridae) on a Microgeographic Scale: Implications for Management Units. J. Econ. Entomol. 2018, 111, 2476–2482. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.A.; Postlethwait, J.H. Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes Genom. Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Antao, T.; Lopes, A.; Lopes, R.J.; Beja-Pereira, A.; Luikart, G. LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform. 2008, 9, 323. [Google Scholar] [CrossRef]
- Beaumont, M.A.; Nichols, R.A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. B Biol. Sci. 1996, 263, 1619–1626. [Google Scholar] [CrossRef]
- Goetz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-Throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Lischer, H.E.L.; Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 2011, 28, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Lessinger, A.C.; Azeredo-Espin, A.M.L. Evolution and structural organisation of mitochondrial DNA control region of myiasis-causing flies. Med. Veter. Entomol. 2000, 14, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Torres, T.T.; Brondani, R.P.V.; Garcia, J.E.; Azeredo-Espin, A.M.L. Isolation and characterization of microsatellite markers in the new world screw-worm Cochliomyia hominivorax (Diptera: Calliphoridae). Mol. Ecol. Notes 2004, 4, 182–184. [Google Scholar] [CrossRef]
- Torres, T.T.; De Azeredo-Espin, A.M.L. Development of new polymorphic microsatellite markers for the New World screw-worm Cochliomyia hominivorax (Diptera: Calliphoridae). Mol. Ecol. Notes 2005, 5, 815–817. [Google Scholar] [CrossRef]
- Johathan Liu, C.S.; Hulce, D.; Li, X.; Snyder-Leiby, T. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. 2011, 22, S35–S36. [Google Scholar]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; Vonholdt, B.M. Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2003, 4, 137–138. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. Popart: Full-Feature software for haplotype network construction. Method. Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating Gene Genealogies. In Parallel and Distributed Processing Symposium, Proceedings International; IEEE: Fort Lauderdale, FL, USA, 2002; p. 184. [Google Scholar]
- Dieringer, D.; Schlötterer, C. Microsatellite analyser(MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics 1992, 48, 361. [Google Scholar] [CrossRef] [PubMed]
- Jorde, P.E.; Ryman, N. Unbiased Estimator for Genetic Drift and Effective Population Size. Genetics 2007, 177, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimatorv2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2013, 14, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. The Effect of Change in Population Size on DNA Polymorphism. Genetics 1989, 123, 597–601. [Google Scholar] [PubMed]
- Fu, Y.X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensisinsecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef]
- Kostaropoulos, I.; Papadopoulos, A.I.; Metaxakis, A.; Boukouvala, E.; Papadopoulou-Mourkidou, E. Glutathione S–Transferase in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol. 2001, 31, 313–319. [Google Scholar] [CrossRef]
- Fang, S.-M. Insect Glutathione S-Transferase: A Review of Comparative Genomic Studies and Response to Xenobiotics. Bull. Insectol. 2012, 65, 265–271. [Google Scholar]
- Jombart, T.; Collins, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0; Imperial College London–MRC Centre for Outbreak Analysis and Modelling: London, UK, 2015. [Google Scholar]
- Brumfield, R.T.; Beerli, P.; Nickerson, D.A.; Edwards, S.V. The Utility of Single Nucleotide Polymorphisms in Inferences of Population History. Trends Ecol. Evol. 2003, 18, 249–256. [Google Scholar] [CrossRef]
- Marandel, F.; Charrier, G.; Lamy, J.B.; Le Cam, S.; Lorance, P.; Trenkel, V.M. Estimating Effective Population Size Using RADseq: Effects of SNP Selection and Sample Size. Ecol. Evol. 2020, 10, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Saarman, N.P.; Gloria-Soria, A.; Anderson, E.C.; Evans, B.R.; Pless, E.; Cosme, L.V.; Gonzalez-Acosta, C.; Kamgang, B.; Wesson, D.M.; Powell, J.R. Effective Population Sizes of a Major Vector of Human Diseases, Aedes Aegypti. Evol. Appl. 2017, 10, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Shpak, M.; Wakeley, J.; Garrigan, D.; Lewontin, R.C. A Structured Coalescent Process for Seasonally Fluctuating Populations. Evolut. N. Y. 2009, 64, 1395–1409. [Google Scholar] [CrossRef] [PubMed]
- Mesnick, S.L.; Taylor, B.L.; Archer, F.I.; Martien, K.K.; Treviño, S.E.; Hancock-Hanser, B.L.; Medina, S.C.M.; Pease, V.L.; Robertson, K.M.; Straley, J.M.; et al. Sperm whale population structure in the eastern and central North Pacific inferred by the use of single-nucleotide polymorphisms, microsatellites and mitochondrial DNA. Mol. Ecol. Resour. 2011, 11, 278–298. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.G.; Atzeni, M.G. Estimation of Dispersal Distances for Cochliomyia hominivorax (Diptera: Calliphoridae). Environ. Entomol. 1993, 22, 368–374. [Google Scholar] [CrossRef]
- De Carvalho, R.A.; Torres, T.T.; De Azeredo-Espin, A.M.L. A survey of mutations in the Cochliomyia hominivorax (Diptera: Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles. Veter. Parasitol. 2006, 140, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.R.; De Azeredo-Espin, A.M.; Torres, T.T. Deep sequencing of New World screw-worm transcripts to discover genes involved in insecticide resistance. BMC Genom. 2010, 11, 695. [Google Scholar] [CrossRef]
- Ffrench-Constant, R.; Daborn, P.J.; Le Goff, G. The genetics and genomics of insecticide resistance. Trends Genet. 2004, 20, 163–170. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- Calla, B.; Demkovich, M.; Siegel, J.P.; Gomes Viana, J.P.; Walden, K.K.O.; Robertson, H.M.; Berenbaum, M.R. Selective Sweeps in a Nutshell; The Genomic Footprint of Rapid Insecticide Resistance Evolution in an Insect Introduction. bioRxiv 2019. [Google Scholar] [CrossRef]
2015-Sample | 2016-Sample | |
---|---|---|
Total number of sequences | 145,692,719 | 136,389,952 |
Reads containing adapter sequence | 9,343,260 | 6,878,774 |
Ambiguous barcodes | 934,983 | 13,656,605 |
Low quality reads | 51,524 | 164,258 |
Ambiguous tags | 5,134,707 | 7,798,267 |
Retained reads | 130,228,245 (89%) | 107,892,048 (79%) |
Sample | N | Nh | Haplotypes (# Individuals) | Ĥ (SD) | π (SD) |
---|---|---|---|---|---|
2015 | 32 | 19 | H1 (8), H2 (4), H3 (2), H4 (2), H5 (2), H6 (3), H8 (2), H9 to H17 (1) | 0.9375 (0.0286) | 0.004530 (0.002372) |
2016 | 31 | 8 | H1 (24), H2 (1), H7 (2), H18 to H21 (1) | 0.4538 (0.1109) | 0.001858 (0.001064) |
Sample | Loci | ||||||||
---|---|---|---|---|---|---|---|---|---|
CH01 | CH05 | CH09 | CH12 | CH14 | CH15 | CH24 | CH26 | ||
2015-Sample | N | 23 | 32 | 31 | 30 | 24 | 21 | 21 | 32 |
(N = 32) | Na (AR) | 7 (7) | 5 (4.97) | 5 (5) | 11 (11) | 4 (4) | 8 (7.98) | 6 (6) | 11 (10.75) |
Ho | 0.522 | 0.656 | 0.355 | 0.833 | 0.375 | 0.667 | 0.714 | 0.781 | |
He | 0.693 | 0.665 | 0.361 | 0.804 | 0.533 | 0.811 | 0.787 | 0.815 | |
FIS | 0.2677 | 0.0291 | 0.0337 | −0.0197 | 0.3157 | 0.2011 | 0.1163 | 0.0572 | |
2016-Sample | N | 31 | 31 | 31 | 31 | 31 | 19 | 31 | 30 |
(N = 31) | Na (AR) | 6 (5.99) | 6 (6) | 5 (5) | 7 (6.97) | 5 (4.90) | 5 (5) | 4 (4) | 9 (9) |
Ho | 0.548 | 0.645 | 0.613 | 0.710 | 0.645 | 0.579 | 0.613 | 0.833 | |
He | 0.677 | 0.583 * | 0.624 | 0.729 | 0.616 * | 0.778 * | 0.670 | 0.852 * | |
FIS | 0.2056 | −0.0909 | 0.0339 | 0.0435 | −0.0318 | 0.2813 | 0.1009 | 0.0391 |
Lowest Allele Frequency Used | |||||
---|---|---|---|---|---|
0.05 | 0.02 | 0.01 | 0+ | ||
Harmonic Mean Sample Size | 27.1 | 27 | 27.2 | 27.5 | |
SNP | Fs | 0.07969 | 0.08043 | 0.07811 | 0.07739 |
F′ | 0.03631 | 0.03710 | 0.03469 | 0.03435 | |
Ne (95% CI, parametric) | 247.9 (211.4–287.2) | 242.6 (211.2–276.1) | 259.5 (233.3–287.0) | 262.0 (237.3–287.8) | |
SSR | Fs | 0.17722 | 0.17167 | 0.17052 | 0.17003 |
F′ | 0.13531 | 0.13013 | 0.12905 | 0.12859 | |
Ne (95% CI, parametric) | 66.5 (39.5–100.5) | 69.2 (43.9–100.1) | 69.7 (45.1–99.6) | 70.0 (46.5–98.2) |
Tajima’s D | p-Value | Fu’s FS | p-Value | |
---|---|---|---|---|
2015-Sample | −0.32833 | 0.416 | −2.77043 | 0.16600 |
2016-Sample | −2.38060 | <0.001 * | 1.10613 | 0.72700 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamo, L.W.; Silva-Brandão, K.L.; Vicentini, R.; Fresia, P.; Azeredo-Espin, A.M.L. Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years. Insects 2020, 11, 539. https://doi.org/10.3390/insects11080539
Bergamo LW, Silva-Brandão KL, Vicentini R, Fresia P, Azeredo-Espin AML. Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years. Insects. 2020; 11(8):539. https://doi.org/10.3390/insects11080539
Chicago/Turabian StyleBergamo, Luana Walravens, Karina Lucas Silva-Brandão, Renato Vicentini, Pablo Fresia, and Ana Maria Lima Azeredo-Espin. 2020. "Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years" Insects 11, no. 8: 539. https://doi.org/10.3390/insects11080539
APA StyleBergamo, L. W., Silva-Brandão, K. L., Vicentini, R., Fresia, P., & Azeredo-Espin, A. M. L. (2020). Genetic Differentiation of a New World Screwworm Fly Population from Uruguay Detected by SNPs, Mitochondrial DNA and Microsatellites in Two Consecutive Years. Insects, 11(8), 539. https://doi.org/10.3390/insects11080539