Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia, China)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fauth, J.E.; Bernardo, J.; Camara, M.; Resetarits, W.J., Jr.; Van Buskirk, J.; McCollum, S.A. Simplifying the jargon of Community Ecology: A conceptual approach. Am. Nat. 1996, 147, 282–286. [Google Scholar] [CrossRef]
- Stroud, J.T.; Bush, M.R.; Ladd, M.C.; Nowicki, R.J.; Shantz, A.A.; Sweatman, J. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol. 2015, 5, 4757–4765. [Google Scholar] [CrossRef]
- Freckleton, R.P.; Watkinson, A.R. Large-scale spatial dynamics of plants: Metapopulations, regional ensembles and patchy populations. J. Ecol. 2002, 90, 419–434. [Google Scholar] [CrossRef]
- Hilt, N.; Fiedler, K. Diversity and composition of Arctilidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers. Distrib. 2005, 11, 387–398. [Google Scholar] [CrossRef]
- Spengler, A.; Hartmann, P.; Buchon, D.; Schulze, C.H. How island size and isolation affect bee and wasp ensembles on small tropical islands: A case study from Kepulauan Seribu Indonesia. J. Biogeogr. 2011, 38, 247–258. [Google Scholar] [CrossRef]
- Estrada-Villegas, S.; McGill, B.J.; Kalko, E.K.V. Determinants of species evenness in a Neotropical bat ensemble. Oikos 2012, 121, 927–941. [Google Scholar] [CrossRef]
- Cantarino, C.M.; Roman, E.S. Morphological indices and resource portioning in a guild of Coleoptera Tenebrionidae at the coastal sand-dunes of Alicante (SE Spain). In Advances in Coleopterology; Zunino, M., Bellés, X., Blas, M., Eds.; European Association of Coleopterology: Barcelona, Spain, 1991; pp. 211–222. [Google Scholar]
- Frenzel, M.; Brandl, R. Diversity and composition of phytophagous insect guilds on Brassicaceae. Oecologia 1998, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, B.R.; Shenbrot, G.I. Structure of communities of ground-dwelling animals at the junction of two phytogeographic zones. J. Biogeogr. 1998, 25, 1115–1131. [Google Scholar] [CrossRef]
- Olivier, R.D.S.; Aranda, R.; Godoi, M.N.; Graciolli, G. Effects of environmental heterogeneity on the composition of insect trophic guilds. Appl. Ecol. Environ. Res. 2014, 12, 209–220. [Google Scholar] [CrossRef]
- Istock, C.A. Population Characteristics of a Species Ensemble of Waterboatmen (Corixidae). Ecology 1973, 54, 535–544. [Google Scholar] [CrossRef]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef]
- Ahearn, G.A. Ecological factors affecting population sampling of desert tenebrionid beetles. Am. Midl. Nat. 1971, 86, 385–406. [Google Scholar] [CrossRef]
- Holm, E.; Edney, E.B. Daily activity of Namib Desert arthropods in relation to climate. Ecology 1973, 54, 45–56. [Google Scholar] [CrossRef]
- Slobodchikoff, C.N. Water balance and temperature preferences and their role in regulating activity times of tenebrionid beetles. Oikos 1983, 40, 113–119. [Google Scholar] [CrossRef]
- Ayal, Y.; Merkl, O. Spatial and temporal distribution of tenebrionid species (Coleoptera) in the Negev Highlands, Israel. J. Arid Environ. 1994, 27, 347–361. [Google Scholar] [CrossRef]
- Dajoz, R. Les Coléoptères Carabides et Ténébrionidés. Ecologie et Biologie; Lavoisier: Paris, France, 2002; pp. 1–522. [Google Scholar]
- Allsopp, P.G. The biology of false wireworms and their adults (soil-inhabiting Tenebrionidae) (Coleoptera): A review. Bull. Entomol. Res. 1980, 70, 343–379. [Google Scholar] [CrossRef]
- Holm, E.; Scholtz, C.H. Structure and pattern of the Namib Desert dune ecosystem at Gobabeb. Madoqua 1980, 12, 5–39. [Google Scholar]
- Louw, S. Species composition and seasonality of pitfall trapped Coleoptera at a site in the Central Orange Free State, South Africa. Navors. Nas. Mus. Res. Natl. Mus. 1987, 5, 415–453. [Google Scholar]
- Fattorini, S. Darkling beetle communities in two geologically contrasting biotopes: Testing biodiversity patterns by microsite comparisons. Biol. J. Linn. Soc. 2009, 98, 787–793. [Google Scholar] [CrossRef]
- Liu, J.-L.; Li, F.-R.; Liu, C.; Liu, Q.-J.; Niu, R.-X. Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodivers. Conserv. 2012, 21, 2601–2619. [Google Scholar] [CrossRef]
- Liu, J.-L.; Zhao, W.-Z.; Li, F.-R. Effects of shrub presence and shrub species on ground beetle assemblages (Carabidae, Curculionidae and Tenebrionidae) in a sandy desert, northwestern China. J. Arid Land 2015, 7, 110–121. [Google Scholar] [CrossRef]
- Li, F.-R.; Liu, J.-L.; Sun, T.-S.; Ma, L.-F.; Liu, L.-L.; Yang, K. Impact of established shrub shelterbelts around oases on the diversity of ground beetles in arid ecosystems of Northwestern China. Insect Conserv. Diver. 2016, 9, 135–148. [Google Scholar] [CrossRef]
- Fattorini, S. Ecology and conservation of tenebrionid beetles in Mediterranean coastal areas. In Insect Ecology and Conservation; Fattorini, S., Ed.; Research Signpost: Trivandrum, Kerala, India, 2008; pp. 165–297. [Google Scholar]
- Gunter, N.L.; Levkaničová, Z.; Weir, T.H.; Ślipiński, A.; Cameron, S.L.; Bocak, L. Towards a phylogeny of darkling beetles, the Tenebrionoidea (Coleoptera). Mol. Phylogenet. Evol. 2014, 79, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Kergoat, G.J.; Soldati, L.; Clamens, A.L.; Jourdan, H.; Jabbour-Zahab, R.; Genson, G.; Bouchard, P.; Condamine, F.L. Higher level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Syst. Entomol. 2014, 39, 486–499. [Google Scholar] [CrossRef]
- Garner, W.; Steinberger, Y. A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. J. Arid Environ. 1989, 16, 257–262. [Google Scholar] [CrossRef]
- Vetaas, O.R. Micro-site effects of trees and shrubs in dry savannas. J. Veg. Sci. 1992, 3, 337–344. [Google Scholar] [CrossRef]
- Alpert, P.; Mooney, H.A. Resource heterogeneity generated by shrubs and topography on coastal sand dunes. Vegetatio 1996, 122, 83–93. [Google Scholar] [CrossRef]
- Shumway, S.W. Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia 2000, 124, 138–148. [Google Scholar] [CrossRef]
- Facelli, J.M.; Temby, A.M. Multiple effects of shrubs on annual plant communities in arid lands of South Australia. Aust. Ecol. 2002, 27, 422–432. [Google Scholar] [CrossRef]
- Li, F.-R. Presence of shrubs influences the spatial pattern of soil seed banks in desert herbaceous vegetation. J. Veg. Sci. 2008, 20, 847–859. [Google Scholar] [CrossRef]
- Cushman, J.H.; Waller, J.C.; Hoak, D.R. Shrubs as ecosystem engineers in a coastal dune: Influences on plant populations, communities and ecosystems. J. Veg. Sci. 2010, 21, 821–831. [Google Scholar] [CrossRef]
- Rogers, L.E.; Woodley, N.E.; Sheldon, J.K.; Beedlow, P.A. Diets of darkling beetles (Coleoptera: Tenebrionidae) within a shrub-steppe ecosystem. Ann. Entomol. Soc. Am. 1988, 81, 782–791. [Google Scholar] [CrossRef]
- Peterson, A.C.; Hendrix, P.F.; Haydu, C.; Graham, R.C.; Quideau, S.A. Single-shrub influence on earthworms and soil macroarthropods in the southern California chaparral. Pedobiologia 2001, 45, 509–522. [Google Scholar] [CrossRef]
- Pen-Mouratov, S.; Rakhimbaev, M.; Barness, G.; Steinberger, Y. Spatial and temporal dynamics of nematode populations under Zygophyllum dumosum in arid environments. Eur. J. Soil Biol. 2004, 40, 31–46. [Google Scholar] [CrossRef]
- Mazía, C.N.; Chaneton, E.J.; Kitzberger, T. Small-scale habitat use and assemblage structure of ground dwelling beetles in a Patagonian shrub steppe. J. Arid Environ. 2006, 67, 177–194. [Google Scholar] [CrossRef]
- Liu, R.-T.; Zhao, H.-L.; Zhao, X.-Y.; Drake, S. Facilitative effects of shrubs in shifting sand on soil macrofaunal community in Horqin sand land of inner Mongolia, northern China. Eur. J. Soil Biol. 2011, 47, 316–321. [Google Scholar] [CrossRef]
- Wardle, D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components; Princeton University Press: Princeton, NJ, USA, 2002; pp. 1–400. [Google Scholar]
- Milcu, A.; Partsch, S.; Langel, R.; Scheu, S. The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos 2006, 112, 513–524. [Google Scholar] [CrossRef]
- Sylvain, Z.A.; Wall, D.H. Linking soil biodiversity and vegetation: Implications for a changing planet. Am. J. Bot. 2011, 98, 517–527. [Google Scholar] [CrossRef]
- Li, G.-Q.; Jin, M.; Chen, X.-M.; Wen, L.-J. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quat. Sci. Rev. 2015, 128, 69–80. [Google Scholar] [CrossRef]
- Chen, F.-H.; Li, G.-Q.; Zhao, H.; Jin, M.; Chen, X.-M.; Fan, Y.-X.; Liu, X.-K.; Wu, D.; Madsen, D. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary. Quat. Res. 2013, 81, 476–487. [Google Scholar]
- Chun, X.; Chen, F.-H.; Fan, Y.-X. Formation of Ulan Buh Desert and its environmental changes during the Holocene. Front. Earth Sci. China 2008, 2, 327–332. [Google Scholar] [CrossRef]
- Yang, W.-B.; Feng, W.; Jia, Z.-Q.; Zhu, Y.-J.; Guo, J.-Y. Soil water threshold for the growth of Haloxylon ammodendron in the Ulan Buh desert in arid northwest China. S. Afr. J. Bot. 2014, 92, 53–58. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Bayannasan, E. Diversity and Community Pattern of Darkling Beetles (Coleoptera: Tenebrionidae) along an Ecological Gradient in Arid Mongolia. In Erforschung Biologischer Ressourcen der Mongolei/Exploration into the Biological Resources of Mongolia; Martin-Luther-Universität Halle-Wittenberg: Halle & Wittenberg, Germany, 2012; Volume 12, pp. 251–266. [Google Scholar]
- Khurelpurev, O.; Pfeiffer, M. Coleoptera in the Altai Mountains (Mongolia): Species richness and community patterns along an ecological gradient. J. Asia Pac. Biodivers. 2017, 10, 362–370. [Google Scholar] [CrossRef]
- Giller, P.S. Community Structure and the Niche; Chapman and Hall: London, UK, 1984; pp. 1–176. [Google Scholar]
- Fattorini, S. A simple method to fit geometric series and broken stick models in community ecology and island biogeography. Acta Oecol. 2005, 28, 199–205. [Google Scholar] [CrossRef]
- McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.; Dornelas, M.; Enquist, B.J.; Green, J.L.; He, F.; et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 2007, 10, 995–1015. [Google Scholar] [CrossRef]
- May, R.M. Patterns of species abundance and diversity. In Ecology and Evolution of Communities; Cody, M.L., Diamond, M.J., Eds.; Harvard University Press: Cambridge, MA, USA, 1975; pp. 81–120. [Google Scholar]
- Magurran, A.E. Ecological Diversity and its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; pp. 1–192. [Google Scholar]
- Hayek, L.C.; Buzas, M.A. Surveying Natural Populations. Quantitative Tools for Assessing Biodiversity; Columbia University Press: New York, NY, USA, 2010; pp. 1–616. [Google Scholar]
- He, F.; Tang, D.-L. Estimating the niche pre-emption of the geometric series. Acta Oecol. 2008, 33, 105–107. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST—Palaeontological statistics software package for education and data analysis, ver. 1.89. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Thomas, D.B. Tenebrionid beetle diversity and habitat complexity in the Eastern Mojave Desert. Coleopt. Bull. 1983, 37, 135–147. [Google Scholar]
- Aldryhim, Y.N.; Mills, C.W., III; Aldawood, A.S. Ecological distribution and seasonality of darkling beetles (Coleoptera: Tenebrionidae) in the central region of Saudi Arabia. J. Arid Environ. 1992, 23, 415–422. [Google Scholar] [CrossRef]
- Doyen, J.T.; Tschinkel, W.R. Population size, microgeographic distribution and habitat separation in some tenebrionid beetles (Coleoptera). Ann. Entomol. Soc. Am. 1974, 67, 617–626. [Google Scholar] [CrossRef]
- Fattorini, S.; Santoro, R.; Maurizi, E.; Acosta, A.T.R.; Di Giulio, A. Environmental tuning of an insect ensemble: The tenebrionid beetles inhabiting a Mediterranean coastal dune zonation. Comptes Rendus Biol. 2012, 335, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, S.; Bergamaschi, D.; Mantoni, C.; Acosta, A.T.R.; Di Giulio, A. Niche partitioning in tenebrionid species (Coleoptera: Tenebrionidae) inhabiting Mediterranean coastal dunes. Eur. J. Entomol. 2016, 113, 462–468. [Google Scholar] [CrossRef][Green Version]
- Fattorini, S.; Bergamaschi, D.; Galassi, D.M.P.; Biondi, M.; Acosta, A.T.R.; Di Giulio, A. Spatial organization of an insect ensemble in a Mediterranean ecosystem: The tenebrionid beetles (Coleoptera Tenebrionidae) inhabiting an Adriatic coastal sand dune area. Acta Zoo. Bulg. 2017, 69, 201–208. [Google Scholar]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Bazzaz, F.A. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 1975, 56, 485–488. [Google Scholar] [CrossRef]
- Gray, J.S. The Ecology of Marine Sediments—An Introduction to the Structures and Functions of Benthic Communities (Cambridge Studies in Modern Biology 2); Cambridge University Press: Cambridge, UK, 1981; pp. 1–185. [Google Scholar]
- Nummelin, M. Log-normal distribution of species abundances is not a universal indicator of rain forest disturbance. J. Appl. Ecol. 1998, 35, 454–457. [Google Scholar] [CrossRef]
- Nummelin, M.; Kaitala, S. Do species dominance indices indicate rain forest disturbance by logging? Biotropica 2004, 36, 628–632. [Google Scholar] [CrossRef]
- Whittaker, R.H. Dominance and diversity in land plant communities. Science 1965, 147, 250–260. [Google Scholar] [CrossRef]
- Keeley, J.E.; Fotheringham, C.J. Species-area relationships in Mediterranean climate plant communities. J. Biogeogr. 2003, 30, 1629–1657. [Google Scholar] [CrossRef]
- Niu, Y.-P.; Ren, G.-D.; Lin, G.; Di Biase, L.; Fattorini, S. Community structure of tenebrionid beetles in the Ulan Buh Desert (Inner Mongolia, China) (Coleoptera: Tenebrionidae). Fragm. Entomol. 2019, 51, 193–200. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.-B.; Ren, G.-D. Taxonomy and distribution of Sternotrigon Skopin in China (Coleoptera, Tenebrionidae). Zootaxa 2013, 3693, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.D.; Ba, Y.-B. Fauna of Soil Darkling Beetles in China. Volume 2 Tentyriforms (Coleoptera: Tenebrionidae); Science Press: Beijing, China, 2009; pp. 1–225. [Google Scholar]
- Zhao, Z.-H.; Reddy, G.V.; Wei, S.-H.; Zhu, M.-M.; Zhang, K.-Y.; Yu, H.-Q.; Wang, Z.-J.; Jiang, Q.; Zhang, R. Plant cover associated with aboveground net primary productivity (ANPP) mediates insect community composition in steppes of Northwest China. J. Asia Pac. Entomol. 2018, 21, 361–366. [Google Scholar] [CrossRef]
- Carpaneto, G.M.; Fattorini, S. Spatial and seasonal organisation of a darkling beetle (Coleoptera Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Ital. J. Zool. 2001, 68, 207–214. [Google Scholar] [CrossRef]
- Fattorini, S.; Carpaneto, G.M. Tenebrionid density in Mediotyrrhenian coastal dunes: Habitat and temporal variations (Coleoptera, Tenebrionidae). Fragm. Entomol. 2001, 33, 97–118. [Google Scholar]
Tenebrionid Species | Ar. sph. | N. tan. | Ph. aus. | Total A | Ar. sph. | N. tan. | P. vil. | Total B |
---|---|---|---|---|---|---|---|---|
Anatolica mucronata Reitter, 1889 | 328 | 170 | 215 | 713 * | 22 | 22 | 7 | 51 * |
Anatolica potanini Reitter, 1889 | 17 | 14 | 16 | 47 | 97 | 44 | 86 | 227 * |
Anatolica immarginata Reitter, 1889 | 22 | 39 | 92 | 153 * | 0 | 0 | 0 | 0 |
Anatolica suturalis Reitter, 1889 | 7 | 2 | 36 | 45 * | 0 | 0 | 0 | 0 |
Microdera kraatzi alashanica Skopin, 1964 | 1 | 2 | 0 | 3 | 0 | 3 | 6 | 9 |
Epitrichia semenovi Bogachev, 1949 | 13 | 48 | 27 | 88 * | 1 | 0 | 2 | 3 |
Sternotrigon zichyi (Csiki, 1901) | 0 | 0 | 0 | 0 | 30 | 22 | 15 | 67 |
Mantichorula semenowi Reitter, 1889 | 9 | 19 | 42 | 70 * | 1 | 0 | 0 | 1 |
Melanesthes jenseni meridionalis Kaszab, 1968 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Blaps kiritshenkoi Semenov et Bogatshev, 1936 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Total | 398 | 294 | 428 | 1120 | 151 | 91 | 117 | 359 |
Ensemble | Intercept | Slope | R2 | t | P | k |
---|---|---|---|---|---|---|
Site A | ||||||
Artemisia sphaerocephala | 2.374 ± 0.245 | −0.305 ± 0.049 | 0.868 | −6.284 | 0.001 | 0.563 |
Nitraria tangutorum | 2.503 ± 0.161 | −0.321 ± 0.036 | 0.941 | −8.943 | <0.001 | 0.518 |
Phragmites australis | 2.416 ± 0.104 | −0.209 ± 0.027 | 0.938 | −7.783 | 0.001 | 0.340 |
Total Site A | 3.194 ± 0.214 | −0.364 ± 0.042 | 0.925 | −8.590 | <0.001 | 0.609 |
Site B | ||||||
Artemisia sphaerocephala | 2.597 ± 0.353 | −0.545 ± 0.106 | 0.897 | −5.119 | 0.014 | 0.681 |
Nitraria tangutorum | 2.076 ± 0.333 | −0.350 ± 0.122 | 0.806 | −2.880 | 0.102 | 0.591 |
Psammochloa villosa | 2.076 ± 0.166 | −0.353 ± 0.043 | 0.945 | −8.302 | 0.001 | 0.590 |
Total Site B | 2.865 ± 0.157 | −0.239 ± 0.040 | 0.899 | −5.951 | 0.004 | 0.611 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Ren, G.; Lin, G.; Di Biase, L.; Fattorini, S. Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia, China). Insects 2020, 11, 410. https://doi.org/10.3390/insects11070410
Niu Y, Ren G, Lin G, Di Biase L, Fattorini S. Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia, China). Insects. 2020; 11(7):410. https://doi.org/10.3390/insects11070410
Chicago/Turabian StyleNiu, Yiping, Guodong Ren, Giulia Lin, Letizia Di Biase, and Simone Fattorini. 2020. "Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia, China)" Insects 11, no. 7: 410. https://doi.org/10.3390/insects11070410
APA StyleNiu, Y., Ren, G., Lin, G., Di Biase, L., & Fattorini, S. (2020). Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia, China). Insects, 11(7), 410. https://doi.org/10.3390/insects11070410