Quorum Sensing Activity and Hyphal Growth by External Stimuli in the Entomopathogenic Fungus Ophiocordyceps sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Culture Media and Culture Conditions
2.2. Chemicals for Bioassay
2.3. Effects of Fungal Inoculum Density on the Blastospores-to-Hyphae Transition
2.4. Effects of Chemicals on the Blastospores-to-Hyphae Transition
2.5. Data Analysis
3. Results
3.1. Effect of Inoculum Density on Fungal Forms and QS Activity
3.2. Blastospores-Hyphae Transition of O. sinensis to External Stimuli
3.3. Effects of Proline and N-acetyl-glucosamine on Biomass Accumulation of O. sinensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Li, E.; Wang, C.; Li, Y.; Liu, X. Ophiocordyceps sinensis, the flagship fungus of China: Terminology, life strategy and ecology. Mycology 2012, 3, 2–10. [Google Scholar]
- Hu, X.; Zhang, Y.; Xiao, G.; Zheng, P.; Xia, Y.; Zhang, X.; St Leger, R.J.; Liu, X.; Wang, C. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin. Sci. Bull. 2013, 58, 2846–2854. [Google Scholar] [CrossRef] [Green Version]
- Holliday, J.C.; Cleaver, M.P. Medicinal value of the caterpillar fungi species of the genus Cordyceps (fr.) link (ascomycetes). Int. J. Med. Mushrooms 2008, 10, 219–234. [Google Scholar] [CrossRef]
- Zhou, X.W.; Li, L.J.; Tian, E.W. Advances in research of the artificial cultivation of Ophiocordyceps sinensis in China. Crit. Rev. Biotechnol. 2014, 34, 233–243. [Google Scholar] [CrossRef]
- Stone, R. Last stand for the body snatcher of the himalayas? Science 2008, 322, 1182. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.L.; Jiao, L.; Jiang, Y.; Li, H.; Jiang, S.P.; Lhosumtseiring, N.; Fu, S.Z.; Dong, C.H.; Zhan, Y.; et al. A survey of the geographic distribution of Ophiocordyceps sinensis. J. Microbiol. 2011, 49, 913–919. [Google Scholar] [CrossRef]
- Qiu, X.H.; Cao, L.; Han, R.C. The progress, issues and perspectives in the research of Ophiocordyceps sinensis. J. Environ. Entomol. 2016, 38, 1–23. [Google Scholar]
- Cao, L.; Ye, Y.S.; Han, R.C. Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), in artificial medium. Int. J. Med. Mushrooms 2015, 17, 1107–1112. [Google Scholar] [CrossRef]
- Tao, Z.; Cao, L.; Zhang, Y.; Ye, Y.S.; Han, R.C. Laboratory rearing of Thitarodes armoricanus and Thitarodes jianchuanensis (Lepidoptera: Hepialidae), hosts of the Chinese medicinal fungus Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae). J. Econ. Entomol. 2016, 109, 176–181. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Li, W.; Li, Q.; Qian, Z.; Liu, X.; Dong, C. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit. Rev. Biotechnol. 2019, 39, 181–191. [Google Scholar] [CrossRef]
- Qin, Q.L.; Zhou, G.L.; Zhang, H.; Meng, Q.; Zhang, J.H.; Wang, H.T.; Miao, L.; Li, X. Obstacles and approaches in artificial cultivation of Chinese cordyceps. Mycology 2018, 9, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Dong, C.H.; Liu, X.Z.; Li, Q.P.; Xia, J.M.; Liang, F. Research advances in artificial cultivation of Chinese cordyceps. Mycosystema 2016, 35, 375–387. [Google Scholar]
- Han, R.C.; Wu, H.; Tao, H.P.; Qiu, X.H.; Liu, G.Q.; Rao, Z.C.; Cao, L. Research on Chinese cordyceps during the past 70 years in China. Chin. J. Appl. Entomol. 2019, 56, 849–883. [Google Scholar]
- Liu, G.Q.; Han, R.C.; Cao, L. Artificial cultivation of the Chinese cordyceps from injected ghost moth larvae. Environ. Entomol. 2019, 48, 1088–1094. [Google Scholar] [CrossRef]
- St Leger, R.J.; Wang, C.; Fang, W. New perspectives on insect pathogens. Fungal Biol. Rev. 2011, 25, 84–88. [Google Scholar] [CrossRef]
- Valero-Jiménez, C.A.; Wiegers, H.; Zwaan, B.J.; Koenraadt, C.J.M.; van Kan, J.A.L. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 2016, 133, 41–49. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef]
- Boucias, D.G.; Pendland, J.C. Principles of Insect Pathology; Klewer Academic Publishers: Boston, MA, USA, 1998; p. 537. [Google Scholar]
- Wang, C.; St Leger, R.J. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 6647–6652. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.J.; Köhler, J.R.; Didomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G.R. Nonfilamentous Candida albicans mutants are avirulent. Cell 1997, 90, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martinez, C.; Perez-Martin, J. Dimorphism in fungal pathogens Candida albicans and Ustilago maydis—Similar inputs, different outputs. Curr. Opin. Microbiol. 2001, 4, 214–221. [Google Scholar] [CrossRef]
- Uppuluri, P.; Chaturvedi, A.K.; Srinivasan, A.; Banerjee, M.; Ramasubramaniam, A.K.; Kohler, J.R.; Kadosh, D.; Lopez-Ribot, J.L. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010, 6, e1000828. [Google Scholar] [CrossRef]
- Gauthier, G.M. Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog. 2015, 11, e1004608. [Google Scholar] [CrossRef]
- Nadal, M.; Garcia-Pedrajas, M.D.; Gold, S.E. Dimorphism in fungal plant pathogens. FEMS Microbiol. Lett. 2008, 284, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Pendland, J.C.; Lopez-Lastra, C.; Boucias, D.G. Laminin binding sites on the cell walls of the entomopathogen Nomuraea rileyi associated with growth and adherence to host tissue. Mycologia 1994, 86, 327–335. [Google Scholar] [CrossRef]
- Boyce, K.J.; Andrianopoulos, A. Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 2015, 39, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Su, C.; Solis, N.V.; Filler, S.G.; Liu, H.P. Synergistic regulation of hyphal elongation by hypoxia, co2, and nutrient conditions controls the virulence of Candida albicans. Cell Host Microbe 2013, 14, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Goffena, J.; Toenjes, K.A.; Butler, D.K. Inhibition of yeast-to-filamentous growth transitions in Candida albicans by a small molecule inducer of mammalian apoptosis. Yeast 2018, 35, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Su, C.; Liu, H.P. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014, 22, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Han, T.L.; Cannon, R.D.; Villas-Bôas, S.G. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet. Biol. 2011, 48, 747–763. [Google Scholar] [CrossRef]
- Oh, K.B.; Miyazawa, H.; Naito, T.; Matsuoka, H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 2001, 98, 4664–4668. [Google Scholar] [CrossRef] [Green Version]
- Alem, M.A.; Oteef, M.D.; Flowers, T.H.; Douglas, L.J. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 2006, 5, 1770–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Fink, G.R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 2006, 20, 1150–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedge, M.È.; Naruzawa, E.S.; Nigg, M.; Bernier, L. Diversity in yeast-mycelium dimorphism response of the Dutch elm disease pathogens: The inoculum size effect. Can. J. Microbiol. 2016, 62, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Naruzawa, E.S.; Bernier, L. Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biol. 2014, 118, 872–884. [Google Scholar] [CrossRef]
- Kiuchi, M.; Yasui, H.; Hayasaka, S.; Kamimura, M. Entomogenous fungus Nomuraea rileyi inhibits host insect molting by c22-oxidizing inactivation of hemolymph ecdysteroids. Arch. Insect Biochem. 2003, 52, 35–44. [Google Scholar] [CrossRef]
- Prompiboon, P.; Bhumiratana, A.; Ruchirawat, S.; Boucias, D.G.; Wiwat, C. Isolation of ergosterol peroxide from Nomuraea rileyi infected larvae of tobacco cutworm. World J. Microbiol. Biotechnol. 2008, 24, 2909–2917. [Google Scholar] [CrossRef]
- Keishi, H.; Kazuyuki, H.; Naoko, M.; Kenji, S.; Saori, T. Inhibitor of melanin synthesis from the fruiting bodies of Ganoderma lucidum (Rokkaku-Reishi). Nat. Med. 2001, 55, 304–307. [Google Scholar]
- Pierce, C.G.; Saville, S.P.; Lopez-Ribot, J.L. High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation. Pathog. Dis. 2014, 70, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jeon, J.; Ahn, C.H.; Chung, S.C.; Shin, J.; Oh, K.B. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Appl. Microbiol. Biotechnol. 2012, 97, 3141–3148. [Google Scholar] [CrossRef]
- Liu, G.Q.; Qiu, X.H.; Cao, L.; Han, R.C. Scratching stimuli of mycelia influence fruiting body production and Ros-scavenging gene expression of Cordyceps militaris. Mycobiology 2018, 46, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Harshman, L.G.; Song, K.D.; Casas, J.; Schuurmans, A.; Kuwano, E.; Kachman, S.D.; Riddiford, L.M.; Hammock, B.D. Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: Juvenile hormone III, bisepoxide juvenile hormone III and methyl farnesoates. J. Insect Physiol. 2010, 56, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- Boucias, D.; Liu, S.; Meagher, R.; Baniszewski, J. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. J. Invertebr. Pathol. 2016, 136, 100–108. [Google Scholar] [CrossRef]
- Guo, H.G.; Ma, A.Z.; Zhao, G.H.; Yun, J.L.; Liu, X.; Zhong, H.X.; Zhuang, G.Q. Effect of farnesol on Penicilllium decumbens’s morphology and cellulase production. BioResources 2011, 6, 3252–3259. [Google Scholar]
- Hornby, J.M.; Jensen, E.C.; Lisec, A.D.; Tasto, J.J.; Jahnke, B.; Shoemaker, R.; Dussault, P.; Nickerson, K.W. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 2001, 67, 2982–2992. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, P.; Casadevall, A. Quorum sensing in fungi—A review. Med. Mycol. 2012, 50, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Berrocal, A.; Navarrete, J.; Oviedo, C.; Nickerson, K.W. Quorum sensing activity in Ophiostoma ulmi: Effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J. Appl. Microbiol. 2012, 113, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, N.; Kumar, A. Messengers for morphogenesis: Inositol polyphosphate signaling and yeast pseudohyphal growth. Curr. Genet. 2019, 65, 119–125. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Aime, M.C.; Grigoriev, I.V.; Martin, F.; Stajich, J.E.; Blackwell, M. The fungal tree of life: From molecular systematics to genome-scale phylogenies. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Fujita, M.; Feng, Q.H.; Clardy, J.; Fink, G.R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 2004, 101, 5048–5052. [Google Scholar] [CrossRef] [Green Version]
- Hornby, J.M.; Jacobitz-Kizzier, S.M.; McNeel, D.J.; Jensen, E.C.; Treves, D.S.; Nickerson, K.W. Inoculum size effect in dimorphic fungi: Extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl. Environ. Microbiol. 2004, 70, 1356–1359. [Google Scholar] [CrossRef] [Green Version]
- Berrocal, A.; Oviedo, C.; Nickerson, K.W.; Navarrete, J. Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol. Lett. 2014, 36, 1503–1513. [Google Scholar] [CrossRef]
- Gilmore, S.A.; Naseem, S.; Konopka, J.B.; Sil, A. N-acetylglucosamine (glcnac) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genet. 2013, 9, e1003799. [Google Scholar] [CrossRef] [Green Version]
- Gaderer, R.; Seidl-Seiboth, V.; de Vries, R.P.; Seiboth, B.; Kappel, L. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa. Fungal Genet. Biol. 2017, 107, 1–11. [Google Scholar] [CrossRef]
- Bergstrom, J.D.; Dufresne, C.; Bills, G.F.; Nallin-Omstead, M.; Byrne, K. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: Potent inhibitors of squalene synthase. Annu. Rev. Microbiol. 1995, 49, 607–639. [Google Scholar] [CrossRef]
Medium | Spore Yield 15 Days after Inoculum | Spore Yield 30 Days after Inoculum | Spore Yield 45 Days after Inoculum | Biomass (g) 60 Days after Inoculum | |||
---|---|---|---|---|---|---|---|
Conidia (×108 per mL) | Blasto-Spores | Conidia (×108 per mL) | Blasto-Spores (×105 per mL) | Conidia (×108 per mL) | Blastospores (×105 per mL) | ||
PM | 1.81 ± 0.35a | 0 | 4.22 ± 0.71a | 5.03 ± 0.84b | 8.53 ± 0.89a | 11.37 ± 1.74b | 2.87 ± 0.11b |
PMP (+proline) | 2.09 ± 0.18a | 0 | 5.03 ± 0.93a | 25.81 ± 4.21a | 9.49 ± 0.44a | 578.13 ± 95.15a | 4.08 ± 0.37a |
PMN (+GlcNAc) | 1.86 ± 0.17a | 0 | 5.17 ± 0.68a | 0.23 ± 0.03c | 6.00 ± 0.12a | 0.32 ± 0.03c | 1.44 ± 0.16c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Cao, L.; Qiu, X.; Han, R. Quorum Sensing Activity and Hyphal Growth by External Stimuli in the Entomopathogenic Fungus Ophiocordyceps sinensis. Insects 2020, 11, 205. https://doi.org/10.3390/insects11040205
Liu G, Cao L, Qiu X, Han R. Quorum Sensing Activity and Hyphal Growth by External Stimuli in the Entomopathogenic Fungus Ophiocordyceps sinensis. Insects. 2020; 11(4):205. https://doi.org/10.3390/insects11040205
Chicago/Turabian StyleLiu, Guiqing, Li Cao, Xuehong Qiu, and Richou Han. 2020. "Quorum Sensing Activity and Hyphal Growth by External Stimuli in the Entomopathogenic Fungus Ophiocordyceps sinensis" Insects 11, no. 4: 205. https://doi.org/10.3390/insects11040205
APA StyleLiu, G., Cao, L., Qiu, X., & Han, R. (2020). Quorum Sensing Activity and Hyphal Growth by External Stimuli in the Entomopathogenic Fungus Ophiocordyceps sinensis. Insects, 11(4), 205. https://doi.org/10.3390/insects11040205