Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stock Colonies of B. fusca
2.2. Production of Neonate B. fusca Larvae for Experiments
2.3. Maize Hybrids
2.4. Experiment Protocol
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van den Berg, J.; Van Rensburg, J.B.J. Effect of various directional insecticide sprays against Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae) in maize and sorghum. S. Afr. J. Plant Soil. 1996, 13, 51–54. [Google Scholar] [CrossRef]
- Van den Berg, J.; Nur, A.F. Chemical control. In Cereal Stem Borers in Africa: Economic Importance, Taxonomy, Natural Enemies and Control; Polaszek, A., Ed.; CABI: Wallingford, UK, 1998; ISBN 085-199-175-0. [Google Scholar]
- Van den Berg, J.; Van Wyk, A. The effect of Bt maize on Sesamia calamistis in South Africa. Entomol. Exp. Appl. 2007, 122, 45–51. [Google Scholar] [CrossRef]
- Kfir, R.; Overholt, W.A.; Khan, Z.R.; Polaszek, A. Biology and management of economically important lepidopteran cereal stem borers in Africa. Annu. Rev. Entomol. 2002, 47, 701–731. [Google Scholar] [CrossRef] [PubMed]
- Tounou, A.K.; Gounou, S.; Borgemeister, C.; Goumedzoe, Y.M.D.; Schulthess, F. Susceptibility of Eldana saccharina (Lepidoptera: Pyralidae), Busseola fusca and Sesamia calamistis (Lepidoptera: Noctuidae) to Bacillus thuringiensis Cry toxins and potential side effects on the larval parasitoid Cotesia sesamiae (Hymenoptera: Braconidae). Biocontrol. Sci. Technol. 2010, 15, 127–137. [Google Scholar] [CrossRef]
- Calatayud, P.A.; Le Rü, B.; Van den Berg, J.; Schulthess, F. Ecology of the African maize stalk borer, Busseola fusca (Lepidoptera: Noctuidae) with special reference to insect-plant interactions. Insects 2014, 5, 539–563. [Google Scholar] [CrossRef] [Green Version]
- Tabashnik, B.E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 1994, 39, 47–79. [Google Scholar] [CrossRef]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, A.J.; Carrière, Y.; Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2009, 54, 147–163. [Google Scholar] [CrossRef]
- Carrière, Y.; Crowder, D.W.; Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 2010, 3, 561–573. [Google Scholar] [CrossRef]
- Siegfried, B.; Jurat-Fuentes, J.L. Editorial overview: Pests and resistance: Resistance to Bt toxins in transgenic crops. Curr. Opin. Insect Sci. 2016, 15, IV–VI. [Google Scholar] [CrossRef]
- Bourguet, D.; Desquilbet, M.; Lemarié, S. Regulating insect resistance management: The case of non-Bt corn refuges in the US. J. Environ. Manag. 2005, 76, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, J.B.J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil. 2007, 24, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Tabashnik, B.E.; Carrière, Y. Global patterns of resistance to bt crops highlighting pink bollworm in the United States, China, and India. J. Econ. Entomol. 2019, 112, 2513–2523. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Brevault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). The Environmental Protection Agency’s White Paper on Bt Plant-Pesticide Resistance Management; United States Environmental Protection Agency: Washington, DC, USA, 1998; ISBN 978-124-406-634-2.
- Gould, F. Testing Bt refuge strategies in the field. Nat. Biotechnol. 2000, 18, 266–267. [Google Scholar] [CrossRef]
- Bates, S.L.; Zhao, J.Z.; Roush, R.T.; Shelton, A.M. Insect resistance management in GM crops: Past, present and future. Nat. Biotechnol. 2005, 23, 57–62. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Gassmann, A.; Crowder, D.W.; Carrière, Y. Insect resistance to Bt crops: Evidence versus theory. Nat. Biotechnol. 2008, 26, 199–202. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Van Rensburg, J.B.J.; Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory, and data. J. Econ. Entomol. 2009, 102, 2011–2025. [Google Scholar] [CrossRef]
- Onstad, D.W.; Mitchell, P.D.; Hurley, T.M.; Lundgren, J.G.; Porter, R.P.; Krupke, C.H.; Spencer, J.L.; Difonzo, C.D.; Baute, T.S.; Hellmich, R.L.; et al. Seeds of change: Corn seed mixtures for resistance management and integrated pest management. J. Econ. Entomol. 2011, 104, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Razze, J.M.; Mason, C.E. Dispersal behavior of neonate European corn borer (Lepidoptera: Crambidae) on Bt corn. J. Econ. Entomol. 2012, 105, 1214–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, M.W.; Head, G.; Caprion, M. When and where a seed mix refuge makes sense for managing insect resistance to Bt plants. J. Crop Prot. 2012, 38, 74–79. [Google Scholar] [CrossRef]
- Carrière, Y.; Fabrick, J.A.; Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016, 34, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, J. Wild host plants of stem borers cannot contribute to insect resistance management in Bt maize in Africa. J. Econ. Entomol. 2017, 110, 221–229. [Google Scholar] [PubMed]
- Van den Berg, J.; Hilbeck, A.; Bøhn, T. Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. J. Crop Prot. 2013, 54, 154–160. [Google Scholar] [CrossRef]
- Head, G. Adapting insect resistance management strategies for transgenic Bt crops to developing world needs. In Proceedings of the 8th International Symposium on the Biosafety of Genetically Modified Organisms (ISBGMO), Montpellier, France, 26–30 September 2004; pp. 16–20. Available online: http://isbr.info/files/tinymce/uploaded/symposia-proceedings/8th_symposium-2004.pdf (accessed on 14 February 2019).
- Mulaa, M.A.; Bergvinson, D.; Mugo, S.; Ngeny, J. Developing insect resistance management strategies for Bt maize in Kenya. Afr. Crop Sci. Conf. Proc. 2007, 8, 1067–1070. [Google Scholar]
- Tefera, T.; Mugo, S.; Mwimali, M.; Anani, B.; Tende, R.; Beyene, Y.; Gichuki, S.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; et al. Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya. Crop Prot. 2016, 89, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J.; Porter, P. Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. Ser. B Biol. Sci. 1992, 250, 165–169. [Google Scholar]
- Pannuti, L.E.R.; Paula-Moraes, S.V.; Hunt, T.E.; Baldin, E.L.L.; Dana, L.; Malaquias, J.V. Plant-to-plant movement of Striacosta albicosta (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize (Zea mays). J. Econ. Entomol. 2016, 109, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Onstad, D.W.; Crespo, A.L.B.; Pan, Z.; Crain, P.R.; Thompson, S.D.; Pilcher, C.D.; Sethi, A. Blended refuge and insect resistance management for insecticidal corn. Environ. Entomol. 2018, 47, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.M.; Onstad, D.W. Seed mixtures as resistance management strategy for European corn borers (Lepidoptera: Crambidae) infesting transgenic corn expressing Cry1Ab protein. J. Econ. Entomol. 2000, 93, 937–984. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, S.; Crowder, D.W.; Brévault, T.; Tabashnik, B.E.; Carrière, Y. Modeling the effects of plant-to-plant gene flow, larval behavior, and refuge size on pest resistance to Bt cotton. Environ. Entomol. 2011, 40, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Ives, A.R.; Glaum, P.R.; Ziebarth, N.L.; Andow, D.A. The evolution of resistance to two-toxin pyramid transgenic crops. Ecol. Appl. 2011, 21, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Brévault, T.; Tabashnik, B.E.; Carrière, Y. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea. Sci. Rep. 2015, 5, 9807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrière, Y.; Dutilleul, P.; Ellers-Kirk, C.; Pedersen, B.; Haller, S.; Antilla, L.; Dennehy, T.J.; Tabashnik, B.E. Sources, sinks and the zone of influence of refuges for managing insect resistance to Bt crops. Ecol. Appl. 2004, 14, 1615–1623. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.F. Host-Plant Selection by Phytophagous Insects; Chapman and Hall: London, UK, 1994; ISBN 0-412-0311-I-6. [Google Scholar]
- Sauvion, N.; Thiéry, D.; Calatayud, P.A. Insect-Plant Interactions in a Crop Protection Perspective. Advances in Botanical Research; Academic Press: London, UK, 2017. [Google Scholar]
- Visser, A.; Du Plessis, H.; Erasmus, A.; Van den Berg, J. Preference of Bt-resistant and susceptible Busseola fusca moths and larvae for Bt and non-Bt maize. Entomol. Exp. Appl. 2019, 167, 849–867. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Clarke, A.R.; Malcolm, S.B. Ecology and behaviour of first instar larval Lepidoptera. Annu. Rev. Entomol. 2002, 47, 361–391. [Google Scholar] [CrossRef]
- Head, G.P.; Greenplate, J. The design and implementation of insect resistance management programs for Bt crops. GM Crops Food 2012, 3, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.A. The role of biotechnology for agricultural sustainability in Africa. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Aheto, D.W.; Bøhn, T.; Breckling, B.; Van den Berg, J.; Ching, L.L.; Wikmark, O. Implications of GM crops in subsistence-based agricultural systems in Africa. In GM Crop Cultivation-Ecological Effects in a Landscape Scale. Theorie in Der Ökologie, 17; Breckling, B., Verhoeven, R., Eds.; Peter Lang: Frankfurt, Germany, 2013; pp. 93–103. [Google Scholar]
- Kotey, D.A.; Assefa, Y.; Van den Berg, J. Enhancing smallholder farmers’ awareness of GM maize technology, management practices and compliance to stewardship requirements in the Eastern Cape Province of South Africa: The role of public extension and advisory services. S. Afr. J. Agric. Ext. 2017, 45, 49–63. [Google Scholar] [CrossRef]
- MacIntosh, S.C. Managing the risk of insect resistance to transgenic insect control traits: Practical approaches in local environments. Pest. Manag. Sci. 2009, 66, 100–106. [Google Scholar] [CrossRef]
- Assefa, Y.; Van den Berg, J. Genetically modified maize: Adoption practices of small-scale farmers in South Africa and implications for resource-poor farmers on the continent. Asp. Appl. Biol. 2010, 96, 215–223. [Google Scholar]
- Jacobson, K.; Myhr, A.I. GM crops and smallholders: Biosafety and local practice. J. Environ. Dev. 2012, 22, 104–124. [Google Scholar] [CrossRef]
- Strydom, E.; Erasmus, A.; Du Plessis, H.; Van den Berg, J. Resistance status of Busseola fusca (Lepidoptera: Noctuidae) populations to single- and stacked-gene Bt maize in South Africa. J. Econ. Entomol. 2018, 112, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Kotey, D.A.; Obi, A.; Assefa, Y.; Erasmus, A.; Van den Berg, J. Monitoring resistance to Bt maize in field populations of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) from smallholder farms in the Eastern Cape Province of South Africa. Afr. Entomol. 2017, 25, 200–209. [Google Scholar] [CrossRef]
- Van Rensburg, J.B.J.; Van Rensburg, G.D.J. Laboratory production of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) and techniques for the detection of resistance in maize plants. Afr. Entomol. 1993, 1, 25–28. [Google Scholar]
- Solomon, M.E. Control of humidity with potassium hydroxide, sulphuric acid or other solutions. Bull. Entomol. Res. 1951, 42, 543–554. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Mason, C.E.; Pesek, J. Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and transgenic Bt corn. J. Econ. Entomol. 2010, 103, 331–339. [Google Scholar] [CrossRef]
- Ramalho, F.S.; Pachú, J.K.S.; Lira, A.C.S.; Malaquias, J.B.; Zanuncio, J.C.; Fernandes, F.S. Feeding and dispersal behavior of the cotton leafworm, Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), on Bt and non-Bt cotton: Implications for evolution and resistance management. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Calatayud, P.A.; Ahuya, P.O.; Groutte, S.; Le Rü, B. The first hours in the life of a Busseola fusca (Lepidoptera: Noctuidae) larva. Entomol. Ornithol. Herpetol. 2015, 4, 164. [Google Scholar] [CrossRef]
- Vélez, A.M.; Alves, A.P.; Blankenship, E.E.; Siegfried, B.D. Effect of Cry1F maize on the behavior of susceptible and resistant Spodoptera frugiperda and Ostrinia nubilalis. Entomol. Exp. Appl. 2016, 159, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Velasco-Hernández, M.C.; Ramirez-Romero, R.; Desneux, N. Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: A review. J. Pest. Sci. 2016, 89, 859–883. [Google Scholar] [CrossRef]
- Swamy, S.V.S.G.; Sharma, H.C.; Subbaratman, G.V.; Vijay, M.P. Ovipositional and feeding preferences of Helicoverpa armigera towards putative transgenic and non-transgenic pigeonpeas. Resist. Pest. Manag. Newsl. 2008, 17, 50–52. [Google Scholar]
- Schwartz, J.M.; Tabashnik, B.E.; Johnson, M.W. Behavioral and physiological responses of susceptible and resistant diamondback moth larvae to Bacillus thuringiensis. Entomol. Exp. Appl. 1991, 61, 179–187. [Google Scholar] [CrossRef]
- Hoy, C.W.; Hall, F.R. Feeding behaviour of Plutella xylostella and Leptinotarsa decemlineata on leaves treated with Bacillus thuringiensis and esfenvalerate. Pestic. Sci. 1993, 38, 335–340. [Google Scholar] [CrossRef]
- Ramachandran, S.; Buntin, G.D.; All, J.N.; Tabashnik, B.E.; Raymer, P.L.; Adang, M.J.; Pulliam, D.A.; Stewart, C.N., Jr. Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J. Econ. Entomol. 1998, 91, 1239–1244. [Google Scholar] [CrossRef]
- Ramachandran, R.; Raffa, K.E.; Miller, M.J.; Ellis, D.D.; McCown, B.H. Behavioral responses and sublethal effects of spruce budworm (Lepidoptera: Tortricidae) and fall webworm (Lepidoptera: Arctiidae) larvae to Bacillus thuringiensis Cry1A(a) toxin diet. Environ. Entomol. 1993, 22, 197–211. [Google Scholar] [CrossRef]
- Berdegué, M.; Trumble, J.T.; Moar, W.J. Effect of CryIC toxin from Bacillus thuringiensis on larval feeding behaviour of Spodoptera exigua. Entomol. Exp. Appl. 1996, 80, 389–401. [Google Scholar] [CrossRef]
- Assefa, Y.; Dlamini, T. Determining genetic variations in B. fusca Fuller (Lepidoptera: Noctuidae) and Chilo partellus Swinhoe (Lepidoptera: Crambidae) from Swaziland and South Africa through sequences of the mtDNA cytochrome oxidase sub-unit 1 gene. Int. J. Adv. Res. Biol. Sci. 2016, 3, 208–213. [Google Scholar]
- Campagne, P.; Capdevielle-Dulac, C.; Pasquet, R.; Cornell, S.J.; Kruger, M.; Silvain, J.F.; Le Rü, B.; Van den Berg, J. Genetic hitch-hiking and resistance evolution to transgenic Bt toxins: Insights from the African stalk borer Busseola fusca (Noctuidae). Heredity 2017, 118, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.; Bezuidenhout, C.C.; Van Den Berg, J. Cytochrome c oxidase I and cytochrome b gene sequences indicate low genetic diversity in South African Busseola fusca (Lepidoptera: Noctuidae) from maize. Afr. Entomol. 2016, 24, 518–523. [Google Scholar] [CrossRef]
Source | SS | d.f. | MS | F-Value | p-Value | |
---|---|---|---|---|---|---|
Susceptible population | Hybrid | 41.35 | 2 | 20.67 | 5.57 | ** |
Day | 15.74 | 3 | 5.25 | 2.85 | * | |
Hybrid * Day | 11.32 | 6 | 1.89 | 1.03 | NS | |
Error | 182.19 | 99 | 1.84 | |||
Resistant population | Hybrid | 358.22 | 2 | 179.11 | 21.47 | *** |
Day | 505.634 | 3 | 168.55 | 16.04 | *** | |
Hybrid * Day | 292.61 | 6 | 48.77 | 4.64 | *** | |
Error | 1040.25 | 99 | 10.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, A.; Du Plessis, H.; Erasmus, A.; Van den Berg, J. Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect? Insects 2020, 11, 77. https://doi.org/10.3390/insects11020077
Visser A, Du Plessis H, Erasmus A, Van den Berg J. Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect? Insects. 2020; 11(2):77. https://doi.org/10.3390/insects11020077
Chicago/Turabian StyleVisser, Andri, Hannalene Du Plessis, Annemie Erasmus, and Johnnie Van den Berg. 2020. "Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect?" Insects 11, no. 2: 77. https://doi.org/10.3390/insects11020077
APA StyleVisser, A., Du Plessis, H., Erasmus, A., & Van den Berg, J. (2020). Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect? Insects, 11(2), 77. https://doi.org/10.3390/insects11020077