Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species Occurrence Record
2.2. Environmental Factors
2.3. MaxEnt Modeling
2.4. MaxEnt Validation
3. Results
3.1. Model Optimal Parameter Evaluation
3.2. Potential Overwintering Distribution
3.3. Factors Shaping the Potential Overwintering Distribution of FAW
3.3.1. Environmental Variable Importance Analysis
3.3.2. Response Curves of the Top Four Environmental Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.M.D.; Bueno, A.D.F.; Andrade, K.; Stecca, C.D.S.; Neves, P.M.O.J.; Oliveira, M.C.N.D. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 2017, 74, 18–31. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall Armyworm: Impacts and Implications for Africa. Outlook Pest Man 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Early, R.; González-Moreno, P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 2018, 40, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Wu, P.; Tian, T.; Ren, Q.; Haseeb, M.; Zhang, R. Potential Distribution and Niche Differentiation of Spodoptera frugiperda in Africa. Insects 2020, 11, 383. [Google Scholar] [CrossRef]
- Sisay, B.; Simiyu, J.; Malusi, P.; Likhayo, P.; Mendesil, E.; Elibariki, N.; Wakgari, M.; Ayalew, G.; Tefera, T. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 2018, 142, 800–804. [Google Scholar] [CrossRef]
- Mallapur, C.; Naik, A.K.; Hagari, S.; Prabhu, S. Status of alien pest fall armyworm, Spodoptera frugiperda (J E Smith) on maize in Northern Karnataka. J. Entomol. Zool. Stud. 2018, 6, 432–436. [Google Scholar]
- FAO. Fall Armyworm. Available online: http://www.fao.org/fall-armyworm/zh/ (accessed on 21 July 2020).
- CABI. Spodoptera Frugiperda (Fall Armyworm). Available online: https://www.cabi.org/isc/datasheet/29810#17692a1a-f6c4-46e0-ad16-1ac84362cdbe (accessed on 21 July 2020).
- EPPO. Spodoptera Frugiperda (LAPHFR)[Datasheet]| EPPO Global Database. Available online: https://gd.eppo.int/taxon/LAPHFR/datasheet (accessed on 23 July 2020).
- National Agro-Tech Axtension and Service Center. Migratory Pests such as Spodoptera Frugiperda Will Re-Emerge in 2020, Threatening Corn Production. Available online: https://www.natesc.org.cn/ (accessed on 22 July 2020).
- Jiang, Y.; Liu, J.; Xie, M.; Li, Y.; Zhang, M.; Qiu, K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Prot. 2019, 45, 10–19. [Google Scholar]
- Du Plessis, H.; Schlemmer, M.-L.; Van den Berg, J. The Effect of Temperature on the Development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Luginbill, P. The Fall Army Worm; U.S. Department of Agriculture: Washington, DC, USA, 1928.
- Sparks, A.N. Fall Armyworm Symposium: A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Garcia, A.G.; Ferreira, C.P.; Godoy, W.A.C.; Meagher, R.L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest. Sci. 2019, 92, 429–441. [Google Scholar] [CrossRef]
- Capinera, J.L. Fall armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae). EDIS 2002, 2002, 1–6. [Google Scholar]
- Ayra-Pardo, C.; Borras-Hidalgo, O. Fall Armyworm (FAW; Lepidoptera: Noctuidae): Moth Oviposition and Crop Protection. In Olfactory Concepts of Insect Control—Alternative to Insecticides: Volume 1; Picimbon, J.-F., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–116. ISBN 978-3-030-05060-3. [Google Scholar]
- Wood, J.R.; Poe, S.L.; Leppla, N.C. Winter Survival of Fall Armyworm Pupae in Florida. Environ. Entomol. 1979, 8, 249–252. [Google Scholar] [CrossRef]
- Sims, S.R. Influence of Soil Type and Rainfall on Pupal Survival and Adult Emergence of the Fall Armyworm (Lepidoptera: Noctuidae) in Southern Florida. J. Entomol. Sci. 2008, 43, 373–380. [Google Scholar] [CrossRef]
- Morin, X.; Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 2009, 90, 1301–1313. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.-C.; Feng, C.-C.; Wan, P.-H.M.; Chang, K.T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L.M. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol. Model. 2019, 392, 179–195. [Google Scholar] [CrossRef]
- Ray, D.; Behera, M.D.; Jacob, J. Evaluating Ecological Niche Models: A Comparison Between Maxent and GARP for Predicting Distribution of Hevea brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1337–1343. [Google Scholar] [CrossRef]
- West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field validation of an invasive species Maxent model. Ecol. Inform. 2016, 36, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; Association for Computing Machinery: New York, NY, USA, 2004; p. 83. [Google Scholar]
- Baloch, M.N.; Fan, J.; Haseeb, M.; Zhang, R. Mapping Potential Distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects 2020, 11, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim. Chang. 2020, 161, 555–566. [Google Scholar] [CrossRef]
- Méndez-Vázquez, L.J.; Lira-Noriega, A.; Lasa-Covarrubias, R.; Cerdeira-Estrada, S. Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Comput. Electron. Agric. 2019, 167, 105101. [Google Scholar] [CrossRef]
- Amiri, M.; Tarkesh, M.; Jafari, R.; Jetschke, G. Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: Which side can perform better in species distribution modeling? Ecol. Inform. 2020, 57, 101060. [Google Scholar] [CrossRef]
- Kumbula, S.; Mafongoya, P.; Peerbhay, K.; Lottering, R.; Ismail, R. Using Sentinel-2 Multispectral Images to Map the Occurrence of the Cossid Moth (Coryphodema tristis) in Eucalyptus Nitens Plantations of Mpumalanga, South Africa. Remote Sens. 2019, 11, 278. [Google Scholar] [CrossRef] [Green Version]
- Malahlela, O.E.; Adjorlolo, C.; Olwoch, J.M. Mapping the spatial distribution of Lippia javanica (Burm. f.) Spreng using Sentinel-2 and SRTM-derived topographic data in malaria endemic environment. Ecol. Model. 2019, 392, 147–158. [Google Scholar] [CrossRef]
- Truong, T.T.A.; Hardy, G.E.S.J.; Andrew, M.E. Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions. Front. Plant Sci. 2017, 8, 770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mod13a2v006/ (accessed on 14 June 2020).
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.J.; Miroslav, D.; Robert, E. Schapire Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 14 June 2020).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, Y.; Zhu, D.; Zheng, J.; et al. Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J. Environ. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Hu, X.; Feng, J. Land-use change drives present and future distributions of Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sci. Total Environ. 2020, 706, 135872. [Google Scholar] [CrossRef]
- Nboyine, J.A.; Kusi, F.; Abudulai, M.; Badii, B.K.; Zakaria, M.; Adu, G.B.; Haruna, A.; Seidu, A.; Osei, V.; Alhassan, S.; et al. A new pest, Spodoptera frugiperda (J.E. Smith), in tropical Africa: Its seasonal dynamics and damage in maize fields in northern Ghana. Crop Prot. 2020, 127, 104960. [Google Scholar] [CrossRef]
- Westbrook, J.; Fleischer, S.; Jairam, S.; Meagher, R.; Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, C.N.; Figueroa Bunge, F.; Signorini, A.M.; Valverde-Garcia, P.; Rule, D.; Babcock, J. Monitoring the Evolution of Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) to the Cry1F Protein in Argentina. J. Econ. Entomol. 2019, 112, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Eash, L.; Fonte, S.J.; Sonder, K.; Honsdorf, N.; Schmidt, A.; Govaerts, B.; Verhulst, N. Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions. J. Agric. Sci. 2019, 157, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.L. Latin American Research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 1988, 71, 630. [Google Scholar] [CrossRef]
- De Sá, L.A.N.; Parra, J.R.P.; de Sa, L.A.N. Natural Parasitism of Spodoptera frugiperda and Helicoverpa zea (Lepidoptera: Noctuidae) Eggs in Corn by Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in Brazil. Fla. Entomol. 1994, 77, 185. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Yuan, L.; Yang, G.; Chen, L.; Zhao, C. Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale: Using satellite images to map regional armyworm damage in maize. Pest. Manag. Sci. 2016, 72, 335–348. [Google Scholar] [CrossRef]
Class | Variables | Percent Contribution | Training Gain with Only Variable |
---|---|---|---|
Monthly Data | |||
Meteorology | Average 2 m Air Temperature (°C) | 1.6 | 0.50 |
Total Precipitation (mm) | 5.5 | 0.15 | |
Average Humidity (g/kg) | 23.5 | 0.41 | |
Vegetation | Normalized Difference Vegetation Index | 10.1 | 0.33 |
Enhanced Vegetation Index | 6.4 | 0.43 | |
Soil | Average 0‒10 cm Soil Moisture (m3/m3) | 2.8 | 0.04 |
Average 0‒10 cm Soil Temperature (°C) | 0.6 | 0.30 | |
Nonmonthly Data | |||
Soil | Soil Classification | 21.4 | 0.29 |
0‒5 cm Silt Content (g/kg) | 25.7 | 0.46 | |
0‒5 cm Clay Content (g/kg) | 2.4 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Dong, Y.; Huang, W.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors. Insects 2020, 11, 805. https://doi.org/10.3390/insects11110805
Huang Y, Dong Y, Huang W, Ren B, Deng Q, Shi Y, Bai J, Ren Y, Geng Y, Ma H. Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors. Insects. 2020; 11(11):805. https://doi.org/10.3390/insects11110805
Chicago/Turabian StyleHuang, Yanru, Yingying Dong, Wenjiang Huang, Binyuan Ren, Qiaoyu Deng, Yue Shi, Jie Bai, Yu Ren, Yun Geng, and Huiqin Ma. 2020. "Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors" Insects 11, no. 11: 805. https://doi.org/10.3390/insects11110805
APA StyleHuang, Y., Dong, Y., Huang, W., Ren, B., Deng, Q., Shi, Y., Bai, J., Ren, Y., Geng, Y., & Ma, H. (2020). Overwintering Distribution of Fall Armyworm (Spodoptera frugiperda) in Yunnan, China, and Influencing Environmental Factors. Insects, 11(11), 805. https://doi.org/10.3390/insects11110805