Population Genetic Structure of Aphis gossypii Glover (Hemiptera: Aphididae) in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Samples
2.2. Microsatellite Genotyping
2.3. Genetic Variation and Genetic Structure
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blackman, R.L.; Eastop, V.F. Aphids as crop pests. In Taxonomic Issues; Van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 1–29. [Google Scholar]
- Leclant, F.; Deguine, J.P. Aphids (Hemiptera: Aphididae). In Insect Pests of Cotton; Matthews, G.A., Tunstall, J.P., Eds.; CABI: Wallingford, UK, 1994; pp. 285–323. [Google Scholar]
- Carletto, J.; Lombaert, E.; Chavigny, P.; Brevault, T.; Lapchin, L.; Vanlerberghe-Masutti, F. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol. Ecol. 2009, 18, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Hardie, J. Aphids as crop pests. In Life Cycles and Polyphenism; Van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 1–29. [Google Scholar]
- Margaritopoulos, J.T.; Tzortzi, M.; Zarpas, K.D.; Tsitsipis, J.A.; Blackman, R.L. Morphological discrimination of Aphis gossypii (Hemiptera: Aphididae) populations feeding on Compositae. Bull. Entomol. Res. 2006, 96, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.Y.; Park, J.S.; Paik, W.H. Studies on the life history of cotton aphid, Aphis gossypii Glover (Homoptera). Korean J. Appl. Entomol. 1979, 18, 85–88. [Google Scholar]
- Kim, J.; Kwon, M. Population dynamics of aphid species in Korean seed potato cultivation area over four decades. Entomol. Res. 2019, 49, 179–184. [Google Scholar] [CrossRef]
- Sun, J.T.; Lian, C.; Navajas, M.; Hong, X.Y. Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae). BMC Genet. 2012, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, X.; Xu, X.; Li, Z.; Li, Y.; Song, D.; Yu, T.; Zhu, F.; Zhang, Q.; Zhou, X. Gene expression profiling in winged and wingless cotton aphids, Aphis gossypii (Hemiptera: Aphididae). Int. J. Biol. Sci. 2014, 10, 257. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, X.M.; Lu, B.; Zhou, L.H.; Wu, K.M. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers. Sci. Rep. 2017, 7, 1920. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Hardie, J.; Halbert, S.; Foottit, R.; Kidd, N.A.C.; Carter, C.I. The relative importance of short-and long-range movement of flying aphids. Biol. Rev. 1993, 68, 291–311. [Google Scholar] [CrossRef]
- Sunnucks, P.; de Barro, P.J.; Lushai, G.; Maclean, N.; Hales, D. Genetic structure of an aphid studied using microsatellites: Cyclic parthenogenesis, differentiated lineages and host specialization. Mol. Ecol. 1997, 6, 1059–1073. [Google Scholar] [CrossRef]
- Loxdale, H.D. Rapid genetic changes in natural insect populations. Ecol. Entomol. 2010, 35, 155–164. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 2008, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Rochat, J. Delayed effects in aphid-parasitoid systems: Consequences for evaluating biological control species and their use in augmentation strategies. Entomophaga 1997, 42, 201. [Google Scholar] [CrossRef]
- Fuller, S.J.; Chavigny, P.; Lapchin, L.; Vanlerberghe-Masutti, F. Variation in clonal diversity in glasshouse infestations of the aphid, Aphis gossypii Glover in southern France. Mol. Ecol. 1999, 8, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Vanlerberghe-Masutti, F.; Chavigny, P.; Fuller, S.J. Characterization of microsatellite loci in the aphid species Aphis gossypii Glover. Mol. Ecol. 1999, 8, 693–695. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teachingand research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9.3. Available online: https://www2.unil.ch/popgen/softwares/fstat.htm.20622 (accessed on 1 September 2019).
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2006, 24, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [PubMed]
- Goldstein, D.B.; Linares, A.R.; Cavalli-Sforzaf, L.L.; Feldman, M.W. An evaluation of genetic distances for use with microsatellite loci. Genetics 1995, 139, 463–471. [Google Scholar] [PubMed]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar] [PubMed]
- Di Rienzo, A.; Peterson, A.C.; Garza, J.C.; Valdes, A.M.; Slatkin, M.; Freimer, N.B. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 1994, 91, 3166–3170. [Google Scholar] [CrossRef] [PubMed]
- Estoup, A.; Cornuet, J.M. Microsatellite evolution: Inferences from population data. In Microsatellites: Evolution and Applications; Goldstein, D.B., Schlotterer, C., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 49–64. [Google Scholar]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435. [Google Scholar] [CrossRef] [PubMed]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F -statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Earl, D.A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Llewellyn, K.S.; Loxdale, H.D.; Harrington, R.; Brookes, C.P.; Clark, S.J.; Sunnucks, P. Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol. Ecol. 2003, 12, 21–34. [Google Scholar] [CrossRef]
- De Barro, P.J.; Sherratt, T.N.; Carvalho, G.R.; Nicol, D.; Iyengar, A.; Maclean, N. Geographic and microgeographic genetic differentiation in two aphid species over southern England using the multilocus (GATA) 4 probe. Mol. Ecol. 1995, 4, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Brévault, T.; Carletto, J.; Linderme, D.; Vanlerberghe-Masutti, F. Genetic diversity of the cotton aphid Aphis gossypii in the unstable environment of a cotton growing area. Agric. For. Entomol. 2008, 10, 215–223. [Google Scholar] [CrossRef]
- Timm, A.E.; Pringle, K.L.; Warnich, L. Genetic diversity of woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) populations in the Western Cape, South Africa. Bull. Entomol. Res. 2005, 95, 187–191. [Google Scholar] [CrossRef]
- Zamoum, T.; Simon, J.C.; Crochard, D.; Ballanger, Y.; Lapchin, L.; Vanlerberghe-Masutti, F.; Guillemaud, T. Does insecticide resistance alone account for the low genetic variability of asexually reproducing populations of the peach-potato aphid Myzus persicae? Heredity 2005, 94, 630. [Google Scholar] [CrossRef]
- Hales, D.F.; Tomiuk, J.; Woehrmann, K.; Sunnucks, P. Evolutionary and genetic aspects of aphid biology: A review. Eur. J. Entomol. 1997, 94, 1–55. [Google Scholar]
- Moores, G.D.; Gao, X.; Denholm, I.; Devonshire, A.L. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii glover (homoptera: Aphididae). Pestic. Biochem. Physiol. 1996, 56, 102–110. [Google Scholar] [CrossRef]
- Delorme, R.; Augé, D.; Béthenod, M.T.; Villatte, F. Communication to the editor insecticide resistance in a strain of Aphis gossypii from Southern France. Pestic. Sci. 1997, 49, 90–96. [Google Scholar] [CrossRef]
- Wright, S. Isolation by distance. Genetics 1943, 28, 114–138. [Google Scholar] [PubMed]
Sampling Name | Population ID | Sample Size | NA | AR | HO | HE | p-Value | FIS1 | Loci with Null Alleles |
---|---|---|---|---|---|---|---|---|---|
PT | PT_16 | 40 | 4.250 | 4.124 | 0.759 | 0.575 | 0.00002 | −0.257 *** | Ago53 |
DJ | DJ_16 | 40 | 3.250 | 3.172 | 0.744 | 0.502 | 0.00002 | −0.438 *** | No |
HS | HS_16 | 40 | 5.250 | 5.080 | 0.741 | 0.623 | 0.00002 | −0.172 *** | Ago69 |
GJ | GJ_16 | 40 | 3.000 | 2.735 | 0.616 | 0.404 | 0.00002 | −0.322 *** | Ago66, Ago126 |
CJu | CJu_16 | 40 | 3.500 | 3.361 | 0.828 | 0.510 | 0.00002 | −0.548 *** | No |
GS | GS_16 | 40 | 3.250 | 3.014 | 0.594 | 0.417 | 0.00002 | −0.297 *** | Ago66 |
CJ | CJ_16 | 40 | 5.500 | 5.266 | 0.851 | 0.709 | 0.00002 | −0.214 *** | No |
YC | YC_16 | 40 | 2.875 | 2.803 | 0.716 | 0.442 | 0.00002 | −0.554 *** | No |
AD | AD_16 | 40 | 5.625 | 5.334 | 0.750 | 0.623 | 0.00002 | −0.241 *** | Ago53 |
MY | MY_16 | 40 | 4.625 | 4.429 | 0.694 | 0.570 | 0.00002 | −0.178 *** | Ago53, Ago69 |
JiJ | JiJ_16 | 40 | 2.750 | 2.707 | 0.850 | 0.472 | 0.00002 | −0.810 *** | No |
KH | KH_16 | 40 | 4.625 | 4.580 | 0.766 | 0.635 | 0.00002 | −0.168 *** | Ago53 |
BS | BS_16 | 40 | 6.125 | 5.949 | 0.878 | 0.719 | 0.00002 | −0.228 *** | No |
IS | IS_16 | 40 | 5.000 | 4.736 | 0.541 | 0.516 | 0.00002 | −0.025 *** | Ago53, Ago66, Ago126 |
JE | JE_16 | 40 | 6.375 | 5.919 | 0.859 | 0.656 | 0.00002 | −0.315 *** | No |
GwJ | GwJ_16 | 40 | 3.375 | 3.161 | 0.544 | 0.354 | 0.00002 | −0.373 *** | Ago53 |
Bos | BoS_16 | 40 | 4.500 | 4.299 | 0.850 | 0.561 | 0.00002 | −0.502 *** | No |
JJ | JJ_16 | 40 | 5.625 | 5.363 | 0.687 | 0.632 | 0.00002 | −0.078 *** | Ago59 |
HS | HS_17 | 40 | 3.375 | 3.271 | 0.494 | 0.422 | 0.00002 | −0.110 *** | Ago53, Ago59, Ago66 |
CY | CY_17 | 30 | 3.625 | 3.625 | 0.513 | 0.438 | 0.00002 | −0.205 *** | Ago53 |
GJ | GJ_17 * | 40 | 3.000 | 2.883 | 0.559 | 0.433 | 0.00002 | -0.166*** | Ago53, Ago59, Ago66 |
CJu | CJu_17 | 40 | 3.000 | 2.904 | 0.631 | 0.469 | 0.00002 | −0.277 *** | Ago59, Ago69 |
CJ | CJ_17 * | 40 | 4.875 | 4.566 | 0.719 | 0.574 | 0.00002 | −0.217 *** | Ago53 |
YC | YC_17 * | 40 | 3.750 | 3.639 | 0.741 | 0.563 | 0.00002 | −0.289 *** | No |
AD | AD_17 | 40 | 3.250 | 3.203 | 0.725 | 0.511 | 0.00002 | −0.332 *** | Ago53, Ago69 |
MY | MY_17 | 40 | 3.750 | 3.611 | 0.547 | 0.428 | 0.00002 | −0.048 *** | Ago53, Ago59, Ago69, Ago126 |
BS | BS_17 | 40 | 5.375 | 5.131 | 0.691 | 0.602 | 0.00002 | −0.155 *** | Ago53, Ago59, Ago126 |
JiJ | JiJ_17 | 40 | 3.625 | 3.461 | 0.656 | 0.549 | 0.00002 | −0.235 *** | Ago53, Ago66 |
IS | IS_17 | 40 | 3.875 | 3.641 | 0.616 | 0.473 | 0.00002 | −0.301 *** | Ago53 |
JE | JE_17 | 40 | 3.875 | 3.708 | 0.763 | 0.527 | 0.00002 | −0.346 *** | No |
GwJ | GwJ_17 * | 40 | 4.375 | 4.131 | 0.734 | 0.527 | 0.00002 | −0.280 *** | Ago53 |
JJ | JJ_17 | 40 | 4.875 | 4.620 | 0.466 | 0.477 | 0.00002 | 0.128 *** | Ago24, Ago53, Ago59 |
HS | HS_18 | 30 | 2.875 | 2.875 | 0.608 | 0.513 | 0.00002 | −0.138 *** | Ago53, Ago59, Ago69 |
CJu | CJu_18 | 30 | 3.250 | 3.250 | 0.579 | 0.501 | 0.00002 | −0.164 *** | Ago53, Ago59, Ago69 |
BS | BS_18 | 30 | 3.500 | 3.500 | 0.550 | 0.485 | 0.00002 | −0.107 *** | Ago53, Ago59, Ago69 |
JE | JE_18 | 30 | 3.250 | 3.250 | 0.596 | 0.443 | 0.00002 | −0.322 *** | Ago59, Ago69 |
JJ | JJ_18 | 30 | 4.375 | 4.375 | 0.700 | 0.542 | 0.00002 | −0.171 *** | Ago53, Ago69 |
Population ID | TPM | SMM | Mode Shift | Population ID | TPM | SMM | Mode Shift |
---|---|---|---|---|---|---|---|
PT_16 | 0.191 | 0.680 | L | CY_17 | 0.281 | 0.578 | L |
DJ_16 | 0.037 **,2 | 0.156 | L | GJ_17 * | 0.191 | 0.422 | L |
HS_16 | 0.371 | 0.629 | L | CJu_17 | 0.020 ** | 0.273 | L |
GJ_16 | 0.422 | 0.473 | L | CJ_17 * | 0.371 | 0.680 | L |
CJu_16 | 0.098 | 0.273 | L | YC_17 * | 0.004 ** | 0.006 ** | L |
GS_16 | 0.289 | 0.813 | L | AD_17 | 0.125 | 0.371 | L |
CJ_16 | 0.002 ** | 0.037 ** | L | MY_17 | 0.727 | 0.844 | L |
YC_16 | 0.027 ** | 0.188 | S | BS_17 | 0.527 | 0.809 | L |
AD_16 | 0.727 | 0.994 | L | JiJ_17 | 0.027 ** | 0.098 | L |
MY_16 | 0.422 | 0.770 | L | IS_17 | 0.371 | 0.809 | L |
JiJ_16 | 0.004 ** | 0.020 ** | S | JE_17 | 0.098 | 0.191 | L |
KH_16 | 0.027 ** | 0.230 | L | GwJ_17 * | 0.473 | 0.875 | L |
BS_16 | 0.010 ** | 0.473 | L | JJ_17 | 0.973 | 0.994 | L |
IS_16 | 0.809 | 0.990 | L | HS_18 | 0.014 ** | 0.098 | S |
JE_16 | 0.629 | 0.963 | L | CJu_18 | 0.098 | 0.273 | L |
GwJ_16 | 0.711 | 0.813 | L | BS_18 | 0.191 | 0.527 | L |
BoS_16 | 0.422 | 0.727 | L | JE_18 | 0.289 | 0.594 | L |
JJ_16 | 0.473 | 0.963 | L | JJ_18 | 0.320 | 0.809 | L |
HS_17 | 0.469 | 0.469 | L |
Source of Variation | df | Sum of Squares | Mean Sum of Squares | Estimated Variance | % of Variation | F-Statistics |
---|---|---|---|---|---|---|
Among populations | 36 | 1434.821 | 39.856 | 0.500 | 15% | FST = 0.190 *** |
Among individuals within populations | 1383 | 2099.471 | 1.518 | 0.000 | 0% | FIS = −0.286 |
Within individuals | 1420 | 3879.000 | 2.732 | 2.732 | 85% | FIT = −0.041 |
Total | 2839 | 7413.292 | 3.231 | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.Y.; Park, Y.; Lee, J.-H. Population Genetic Structure of Aphis gossypii Glover (Hemiptera: Aphididae) in Korea. Insects 2019, 10, 319. https://doi.org/10.3390/insects10100319
Nam HY, Park Y, Lee J-H. Population Genetic Structure of Aphis gossypii Glover (Hemiptera: Aphididae) in Korea. Insects. 2019; 10(10):319. https://doi.org/10.3390/insects10100319
Chicago/Turabian StyleNam, Hwa Yeun, Yujeong Park, and Joon-Ho Lee. 2019. "Population Genetic Structure of Aphis gossypii Glover (Hemiptera: Aphididae) in Korea" Insects 10, no. 10: 319. https://doi.org/10.3390/insects10100319
APA StyleNam, H. Y., Park, Y., & Lee, J.-H. (2019). Population Genetic Structure of Aphis gossypii Glover (Hemiptera: Aphididae) in Korea. Insects, 10(10), 319. https://doi.org/10.3390/insects10100319