# Oxidative Damage of a Superalloy in High-Loaded Contacts

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. Diffusion Model

#### 2.2. Contact Model

#### 2.3. CG-Verfahren

## 3. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

MDPI | Multidisciplinary Digital Publishing Institute |

SAM | Semi-analytical Methode |

FEM | Finite Elemente Methode |

CG | Conjugate Gradient |

c | concentration |

s | phase boundary |

D | Diffusion coefficient |

T | temperature |

t | time |

${c}^{*}$ | jump concentration |

$x,y,z$ | location coordinates |

$\beta $ | growth coefficient |

${\psi}_{*},\phi $ | potential function |

~ | frequency domain |

u | displacement |

$\sigma $ | body stress |

$\xi ,\eta $ | frequency domain coordinates |

k | number layers |

$\mathbf{M}$ | coefficient Matrix |

$\mathbf{a}$ | coefficient solution vector |

$\mathbf{p}$ | coefficient boundary vector |

${C}_{ij}^{u}$ | displacement influence coefficient matrix |

${C}_{ij}^{{\sigma}_{n}}$ | stress influence coefficient matrix |

$i,j$ | discretization points |

$E,G$ | modulus of elasticity |

t | layer thickness |

F | force |

${g}_{l}$ | gap function |

${h}_{l}$ | geometry |

${p}_{l}$ | pressure |

${I}_{g}$ | Contact area |

${a}_{x},{a}_{y}$ | contact length |

## Appendix A

## References

- Wagner, C. Reaktionstypen bei der Oxydation von Legierungen. Zeitschrift für Elektrochemie Berichte der Bunsengesellschaft für physikalische Chemie
**1959**, 63, 772–782. [Google Scholar] - Gesmundo, F.; Viani, F. Transition from internal to external oxidation for binary alloys in the presence of an outer scale. Oxid. Met.
**1986**, 25, 269–282. [Google Scholar] [CrossRef] - Heikinheimo, L.; Baxter, D.; Hack, K.; Spiegel, M.; Hämäläinen, M.; Krupp, U.; Penttilä, K.; Arponen, M. Optimisation of in-service performance of boiler steels by modelling high-temperature corrosion. Mater. Corros.
**2006**, 57, 230–236. [Google Scholar] [CrossRef] - Javierre, E.; Vuik, C.; Vermolen, F.; van der Zwaag, S. A comparison of numerical models for one-dimensional Stefan problems. J. Comput. Appl. Math.
**2006**, 192, 445–459. [Google Scholar] [CrossRef] [Green Version] - Lagoudas, D.C.; Entchev, P.; Triharjanto, R. Modeling of oxidation and its effect on crack growth in titanium alloys. Comput. Methods Appl. Mech. Eng.
**2000**, 183, 35–50. [Google Scholar] [CrossRef] - Polonsky, I.A.; Keer, L.M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques. Wear
**1999**, 231, 206–219. [Google Scholar] [CrossRef] - Cai, S. 3D Numerical Modeling of Dry/Wet Contact Mechanics for Rough, Multilayered Elastic Plastic Solid Surfaces and Effects of Hydrophilicity/Hydrophobicity during Separation with Applications. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2008. [Google Scholar]
- Chen, W.W.; Zhou, K.; Keer, L.M.; Wang, Q.J. Modeling elasto-plastic indentation on layered materials using the equivalent inclusion method. Int. J. Solids Struct.
**2010**, 47, 2841–2854. [Google Scholar] [CrossRef] [Green Version] - Senge, M.; Steger, J.; Brückner-Foit, A.; Rienäcker, A. Quantitative analysis of diffusion processes associated with γ′-depletion in Ni-base superalloys. Materialia
**2018**, 3, 41–49. [Google Scholar] [CrossRef] - Özdemir, O.; Ancellotti, S.; Rienacker, A. Tribologische Charakterisierung rauer Oberflächen mit Berücksichtigung von Oberflächenbeschichtungen bei Mischreibung. In Proceedings of the 58th Tribology Conference, Gottingen, Germany, 27 September 2017. [Google Scholar]
- Bhushan, B.; Peng, W. Contact mechanics of multilayered rough surfaces. Appl. Mech. Rev.
**2002**, 55, 435. [Google Scholar] [CrossRef] - Polonsky, I.A.; Keer, L.M. A fast and accurate method for numerical analysis of elastic layered contacts. J. Tribol.
**2000**, 122, 30–35. [Google Scholar] [CrossRef] - Polonsky, I.A.; Keer, L.M. Stress Analysis of Layered Elastic Solids With Cracks Using the Fast Fourier Transform and Conjugate Gradient Techniques. J. Appl. Mech.
**2001**, 68, 708. [Google Scholar] [CrossRef]

**Figure 3.**Results for the stess field of the sphere geometry with variation of the layer thickness t.

**Figure 4.**Results for the stress field of the patch geometry with variation of the layer thickness t.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Senge, M.; Steger, J.; Rienäcker, A.; Brückner-Foit, A.
Oxidative Damage of a Superalloy in High-Loaded Contacts. *Lubricants* **2020**, *8*, 4.
https://doi.org/10.3390/lubricants8010004

**AMA Style**

Senge M, Steger J, Rienäcker A, Brückner-Foit A.
Oxidative Damage of a Superalloy in High-Loaded Contacts. *Lubricants*. 2020; 8(1):4.
https://doi.org/10.3390/lubricants8010004

**Chicago/Turabian Style**

Senge, Matthias, John Steger, Adrian Rienäcker, and Angelika Brückner-Foit.
2020. "Oxidative Damage of a Superalloy in High-Loaded Contacts" *Lubricants* 8, no. 1: 4.
https://doi.org/10.3390/lubricants8010004