Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Sliding Tests
2.3. Analysis
3. Results and Discussion
3.1. Friction Coefficients
3.2. ToF-SIMS Analysis Results
3.3. Q-Mass Analysis Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kondo, H.; Seto, J.; Ozawa, K.; Haga, S. Novel lubricants for magnetic thin film media. J. Magn. Soc. Jpn. 1989, 13, 213–218. [Google Scholar] [CrossRef]
- Ye, C.; Liu, W.; Chen, Y.; Yu, L. Room-temperature ionic liquids: A novel versatile lubricants. Chem. Commun. 2001, 21, 2244–2245. [Google Scholar] [CrossRef]
- Amann, T.; Dold, C.; Kailer, A. Complex fluids intribology to reduce friction: Mesogenic fluids, ionic liquids and ionic liquid crystals. Tribol. Int. 2013, 65, 3–12. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, L. High-performance lubricant additives based on modified graphene oxide by ionic liquids. J. Colloid Interfaces Sci. 2015, 452, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, J.; Mu, L.; Shi, Y.; Dong, Y.; Feng, X.; Lu, X. High load capacity with ionic liquid-lubricated tribological system. Tribol. Int. 2016, 94, 315–322. [Google Scholar] [CrossRef]
- Wilkes, J.S.; Zaworokto, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. 1992, 13, 965–967. [Google Scholar] [CrossRef]
- Chauvim, Y.; Mussmann, L.; Olivier, H. A novel class of versatile solvents for two phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexed in liquid 1,3-dialkylimidazolium salts. Angew. Chem. Int. Ed. Eng. 1996, 34, 2698–2700. [Google Scholar] [CrossRef]
- Suzuki, A.; Shinka, Y.; Masuko, M. Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum. Tribol. Lett. 2007, 27, 307–313. [Google Scholar] [CrossRef]
- Maton, C.; Vos, N.D.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Yanagida, M.; Tanimoto, K.; Nomura, M.; Kitagawa, Y.; Miyazaki, Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett. 2000, 8, 922–923. [Google Scholar] [CrossRef]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef] [PubMed]
- Jímenez, A.E.; Bermúdez, M.D.; Carrion, F.J.; Martinez-Nicholas, G. Room temperature ionic liquids as lubricant additives in steel-aluminium contacts: Influence of sliding velocity, normal load and temperature. Wear 2006, 261, 347–359. [Google Scholar] [CrossRef]
- Minami, I.; Kamimura, H.; Mori, S. Thermo-oxidative stability of ionic liquids as lubricating fluid. J. Synth. Lubr. 2007, 24, 135–147. [Google Scholar] [CrossRef]
- Somers, A.E.; Howlett, P.C.; MacFarlane, D.R.; Forsyth, M. A Review of Ionic Liquid Lubricants. Lubricants 2013, 1, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Chen, Y.; Wang, D.; Zhang, J. Tribological behavior of amorphous Cr coatings electrodeposited from Cr(III) baths under ionic liquid lubrication. Electrochem. Solid-State Lett. 2007, 10, 85–87. [Google Scholar] [CrossRef]
- Viesca, J.-L.; Anand, M.; Blanco, D.; Fernández-González, A.; García, A.; Hadfield, M. Tribological Behaviour of PVD Coatings Lubricated with a FAP− Anion-Based Ionic Liquid Used as an Additive. Lubricants 2016, 4, 8. [Google Scholar] [CrossRef]
- Hernández Battez, A.; Ramos, D.; Blanco, D.; González, R.; Fernández-González, A.; Viesca, J.-L. Lubrication Properties of the Ionic Liquid Dodecyl-Methylimidazolium bis(trifluoromethylsulfonyl)imide. Tribol. Lett. 2018, 66, 19. [Google Scholar] [CrossRef]
- Viesca, J.-L.; Mallada, M.T.; Blanco, D.; Fernández-González, A.; Espina-Casado, J.; González, R.; Hernández Battez, A. Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil. Tribol. Int. 2017, 116, 422–430. [Google Scholar] [CrossRef]
- Huang, G.; Yu, Q.; Meirong, C.; Zhou, F.; Liu, W. Investigation of the lubricity and antiwear behavior of guanidinium ionic liquids at high temperature. Tribol. Int. 2017, 114, 65–76. [Google Scholar] [CrossRef]
- Kondo, Y.; Yagi, S.; Koyama, T.; Tsuboi, R.; Sasaki, S. Lubricity and corrosiveness of ionic liquids for steel-on-steel sliding contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 991–1006. [Google Scholar] [CrossRef]
- Kawada, S.; Watanabe, S.; Kondo, Y.; Tsuboi, R.; Sasaki, S. Tribochemical reaction of ionic liquids under vacuum condition. Tribol. Lett. 2014, 54, 309–315. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361–363. [Google Scholar] [CrossRef]
- Arias-Pardilla, J.; Espinosa, T.; Bermúdez, M.D. Ionic Liquids in Surface Protection. In Electrochemistry in Ionic Liquids; Torriero, A.A.J., Ed.; Springer: Berlin, Germany, 2015; Volume 2, pp. 533–561. ISBN 978-3-319-15131-1. [Google Scholar]
- Minami, I.; Inada, T.; Okada, Y. Tribological properties of halogen-free ionic liquids. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 891–902. [Google Scholar] [CrossRef]
- Kawada, S.; Watanabe, S.; Tsuboi, R.; Sasaki, S.; Prakash, B. Lubrication mechanism of halogen-free ionic liquids. Tribol. Online 2017, 12, 155–161. [Google Scholar] [CrossRef]
- Okubo, H.; Kawada, S.; Watanabe, S.; Sasaki, S. Tribological performance of halogen-free ionic liquids in steel-steel and DLC-DLC contacts. Tribol. Trans. 2018, 61, 71–79. [Google Scholar] [CrossRef]
- Kawada, S.; Sato, K.; Watanabe, S.; Sasaki, S. Lubricating property of cyano-based ionic liquids against hard materials. J. Mech. Sci. Technol. 2017, 31, 5745–5750. [Google Scholar] [CrossRef]
- Kawada, S.; Watanabe, S.; Tadokoro, C.; Tsuboi, R.; Sasaki, S. Lubricating mechanism of cyano-based ionic liquids on nascent steel surface. Tribol. Int. 2018, 119, 474–480. [Google Scholar] [CrossRef]
- Kawada, S.; Sasaki, S. Tribological Properties of Cyano-Based Ionic Liquids under Different Environments. Tribol. Online 2018, 13, 152–156. [Google Scholar] [CrossRef]
- Kawada, S.; Ichise, Y.; Watanabe, S.; Tadokoro, C.; Sasaki, S. Tribochemical reaction of ionic liquids as lubricants on steel sliding surfaces. In Surfactants in Tribology, 5th ed.; Biresaw, G., Mittal, K.K., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 3, pp. 1–18. ISBN 9781498734790. [Google Scholar]
- Kondo, Y.; Koyama, T.; Sasaki, S. Tribological Properties of Ionic Liquids; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Siedlecka, E.M.; Czerwicka, M.; Stolte, S.; Stepnowski, P. Stability of ionic liquids in application conditions. Curr. Org. Chem. 2011, 12, 1974–1991. [Google Scholar] [CrossRef]
- Ohtani, H.; Ishimura, S.; Kumai, M. Thermal decomposition behaviors of imidazolium-type ionic liquids studied by pyrolysis-gas chromatography. Anal. Sci. 2008, 24, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Tim, J.W.; Katarina, M.J.; Kevin, J.F.; Douglas, R.M.; Janet, L.S. Thermal degradation of cyano containing ionic liquids. Green Chem. 2006, 8, 691–696. [Google Scholar]
- Kroon, M.C.; Buijs, W.; Peters, C.J.; Witkamp, G.-J. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim. Acta 2007, 465, 40–47. [Google Scholar] [CrossRef]
- Kawada, S.; Watanabe, S.; Tadokoro, C.; Sasaki, S. Effects of alkyl chain length of sulfate and phosphate anion-based ionic liquids on Tribochemical reactions. Tribol. Lett. 2018, 66, 8. [Google Scholar] [CrossRef]
- Lu, R.; Mori, S.; Kobayashi, K.; Nanao, H. Study of tribochemical decomposition of ionic liquids on a nascent steel surface. Appl. Surf. Sci. 2009, 255, 8965–8971. [Google Scholar] [CrossRef]
Material | Method | Roughness, Ra (μm) | Hardness (GPa) |
---|---|---|---|
AISI 52100 | Hardening | 0.05 | 7 |
TiO2 | Sintering | 0.05 | 15 |
ta-C | Arc Ion Plating | 0.01 | 73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawada, S.; Watanabe, S.; Sasaki, S.; Miyatake, M. Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition. Lubricants 2018, 6, 69. https://doi.org/10.3390/lubricants6030069
Kawada S, Watanabe S, Sasaki S, Miyatake M. Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition. Lubricants. 2018; 6(3):69. https://doi.org/10.3390/lubricants6030069
Chicago/Turabian StyleKawada, Shouhei, Seiya Watanabe, Shinya Sasaki, and Masaaki Miyatake. 2018. "Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition" Lubricants 6, no. 3: 69. https://doi.org/10.3390/lubricants6030069
APA StyleKawada, S., Watanabe, S., Sasaki, S., & Miyatake, M. (2018). Evaluation of Friction Behavior and Surface Interactions of Cyano-Based Ionic Liquids under Different Sliding Contacts and High Vacuum Condition. Lubricants, 6(3), 69. https://doi.org/10.3390/lubricants6030069