Ionic Nanofluids in Tribology
Abstract
:1. Introduction
2. Ionic Liquids
3. Nanophases
3.1. Nanometals
3.2. Metal Oxide Nanoparticles
3.3. Mechanisms of Friction Reduction and Wear Protection by Nanoparticles
3.4. Effect of Nanoparticle Concentration and Size
3.5. Fullerene-Like Nanomaterials
3.6. Friction Mechanisms for IF Nanomaterials
- (a)
- Effective rolling due to the spherical shape of IF nanoparticles.
- (b)
- The prevention of materials contact due to the intercalation of IF nanoparticles.
- (c)
- The formation of a third body by a mixture of the base oil and additives with wear debris particles.
3.7. Carbon Nanophases
3.8. Nanodiamonds
3.9. Carbon Nanotubes
3.10. Graphene
- (a)
- A rolling effect between the friction surfaces,
- (b)
- Formation of a tribo-film with a high load-bearing ability, preventing the direct contact between the rubbing surfaces (Figure 6).
3.11. Graphene/IL Polymer Matrix Composite Materials
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Walden, P. Uber die Moleculargrösse und Elektrische Leitfähigkeit einiger geschmolzenen Salze. Bull. Acad. Imp. Sci. St.-Petersb. 1914, 8, 405–422. [Google Scholar]
- Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem. Commun. 1992, 13, 965–967. [Google Scholar] [CrossRef]
- Ye, C.; Liu, W.; Chen, Y.; Yu, L. Room-temperature ionic liquids: A novel versatile lubricant. Chem. Commun. 2001, 2244–2245. [Google Scholar] [CrossRef]
- Torimoto, T.; Tsuda, K.; Okazaki, S.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196–1221. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, K.R.; Villar-García, I.J.; Maier, F.; Steinrück, H.P.; Licence, P. Photoelectron spectroscopy of ionic liquid-based interfaces. Chem. Rev. 2010, 110, 5158–5190. [Google Scholar] [CrossRef] [PubMed]
- Minami, I. Ionic liquids in tribology. Molecules 2009, 14, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, M.D.; Jiménez, A.E.; Sanes, J.; Carrión, F.J. Ionic liquids as advanced lubricantes. Molecules 2009, 14, 2888–2908. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef] [PubMed]
- Van Rensselar, J. Unleashing the potential of ionic liquids. Tribol. Lubr. Technol. 2010, 4, 24–31. [Google Scholar]
- Palacio, M.; Bushan, B. A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 2010, 40, 247–268. [Google Scholar] [CrossRef]
- Somers, A.E.; Howlett, P.C.; MacFarlane, D.R.; Forsyth, M. A Review of Ionic Liquid Lubricants. Lubricants 2013, 1, 3–21. [Google Scholar] [CrossRef]
- Bermúdez, M.D. Introduction to the ionic liquids special issue. Tribol. Lett. 2010, 40, 213. [Google Scholar] [CrossRef]
- Dörr, N. Special issue on ionic liquids as lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 889–890. [Google Scholar] [CrossRef]
- Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003, 300, 2072–2074. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, T.; Aida, T. Ionic liquids form soft functional materials with carbon nanotubes. Chemistry 2007, 13, 5048–5058. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chu, H.; Li, Y. Why single-walled carbon nanotubes can be dispersed in imidazoliumbased ionic liquids. ACS Nano 2008, 2, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Wu, T.B.; Ding, K.L.; Hu, B.J.; Hou, M.Q.; Han, B.X. The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid. J. Chem. Soc. Chem. Commun. 2009, 14, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.U.S. Nanofluids: From vision to reality through research. J. Heat Transf. ASME 2009, 131, 033106. [Google Scholar] [CrossRef]
- Chinas-Castillo, F.; Spikes, H.A. Mechanism of action of colloidal solid dispersions. Trans. ASME 2003, 125, 552–557. [Google Scholar] [CrossRef]
- Patton, S.T.; Andrey, A.; Voevodin, A.A.; Vaia, R.A.; Pender, M.; Diamanti, S.J.; Phillips, B. Nanoparticle Liquids for Surface Modification and Lubrication of MEMS Switch Contacts. J. Microelectromech. Syst. 2008, 17, 741–746. [Google Scholar] [CrossRef]
- Hernández-Battez, A.; González, R.; Viesca, J.L.; Fernández, J.E.; Díaz-Fernández, J.M.; Machado, A.; Chou, R.; Riba, J. CuO, ZrO and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 2008, 265, 422–428. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Ingole, S.; Charanpahari, A.; Kakade, A.; Umare, S.S.; Bhatt, D.V.; Menghani, J. Tribological behavior of nano TiO as an additive in base oil. Wear 2013, 301, 776–785. [Google Scholar] [CrossRef]
- Smith, J.A.; Werzer, O.; Webber, G.B.; Warr, G.G.; Atkin, R. Surprising Particle Stability and Rapid Sedimentation Rates in an Ionic Liquid. J. Phys. Chem. Lett. 2010, 1, 64–68. [Google Scholar] [CrossRef]
- Gusain, R.; Khatri, O.P. Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J. Mater. Chem. A 2013, 1, 5612–5619. [Google Scholar] [CrossRef]
- Hernandez-Battez, A.; Fernandez-Rico, J.E.; Navas-Arias, A.; Viesca-Rodriguez, J.L.; Chou Rodriguez, R.; Diaz Fernandez, J.M. The tribological behaviour of ZnO nanoparticles as an additive to PAO 6. Wear 2006, 261, 256–263. [Google Scholar] [CrossRef]
- Sanes, J.; Carrión, F.J.; Bermúdez, M.D. ZnO-ionic liquid nanostructures. Appl. Surf. Sci. 2009, 255, 4859–4862. [Google Scholar] [CrossRef]
- Carrion, F.J.; Sanes, J.; Bermudez, M.D. Effect of ionic liquid on the structure and tribological properties of polycarbonate-zinc oxide nanodispersion. Mater. Lett. 2007, 61, 4531–4535. [Google Scholar] [CrossRef]
- Bermúdez, M.D.; Brostow, W.; Carrión, F.J.; Sanes, J. Scratch resistance of polycarbonate containing ZnO nanoparticles: Effects of sliding direction. J. Nanosci. Nanotechnol. 2010, 10, 6683–6689. [Google Scholar] [CrossRef] [PubMed]
- Sanes, J.; Carrión, F.J.; Bermúdez, M.D. Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear 2010, 268, 1295–1302. [Google Scholar] [CrossRef]
- Rapoport, L.; Feldman, Y.; Homyonfer, M.; Cohen, H.; Sloan, J.; Hutchison, J.L. Inorganic fullerene-like material as additives to lubricants: Structure-function relationship. Wear 1999, 225–229, 975–982. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Tao, X.; Jiazheng, Z.; Kang, X. The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D 1996, 29, 2932–2937. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Z.; Zhou, F.; Liu, W.; Liang, Y. A novel lubricant additive based on carbon nanotubes for ionic liquids. Mater. Lett. 2008, 62, 2967–2969. [Google Scholar] [CrossRef]
- Pei, X.; Xia, Y.; Liu, W.; Bo, Y.; Hao, J. Polyelectrolyte-Grafted Carbon Nanotubes: Synthesis, Reversible Phase-Transition Behavior, and Tribological Properties as Lubricant Additives. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7225–7237. [Google Scholar] [CrossRef]
- Carrión, F.J.; Espejo, C.; Sanes, J.; Bermúdez, M.D. Single-walled carbon nanotubes modified by ionic liquid as antiwear additives of thermoplastics. Compos. Sci. Technol. 2010, 70, 2160–2167. [Google Scholar] [CrossRef]
- Wang, B.G.; Wang, X.B.; Lou, W.J.; Hao, J.C. Rheological and Tribological Properties of Ionic Liquid-Based Nanofluids Containing Functionalized Multi-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114, 8749–8754. [Google Scholar] [CrossRef]
- Carrión, F.J.; Sanes, J.; Bermúdez, M.D.; Arribas, A. New single-walled carbon nanotubes-ionic liquid lubricant. Application to polycarbonate-stainless steel sliding contact. Tribol. Lett. 2011, 41, 199–207. [Google Scholar] [CrossRef]
- Bermúdez, M.D.; Carrión, F.J.; Espejo, C.; Martínez-López, E.; Sanes, J. Abrasive wear under multiscratching of polystyrene plus single-walled carbon nanotube nanocomposites. Effect of sliding direction and modification by ionic liquid. Appl. Surf. Sci. 2011, 257, 9073–9081. [Google Scholar] [CrossRef]
- Gong, X.; Kozbial, A.; Rose, F.; Li, L. Effect of π− π+ Stacking on the Layering of Ionic Liquids Confined to an Amorphous Carbon Surface. ACS Appl. Mater. Interfaces 2015, 7, 7078–7081. [Google Scholar] [CrossRef] [PubMed]
- Espejo, C.; Carrión, F.J.; Bermúdez, M.D. Scratch Resistance of New Polystyrene Nanocomposites with Ionic Liquid-Modified Multi-walled Carbon Nanotubes. Tribol. Lett. 2013, 52, 271–285. [Google Scholar] [CrossRef]
- Espejo, C.; Carrión, F.J.; Martínez, D.; Bermúdez, M.D. Multi-walled Carbon Nanotube-Imidazolium Tosylate Ionic Liquid Lubricant. Tribol. Lett. 2013, 50, 127–136. [Google Scholar] [CrossRef]
- Suárez, I.; Grobert, N.; Ewels, C.P. Nomenclature of sp2 carbon nanoforms. Guest Editorial. Carbon 2012, 50, 741–747. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Penkov, O.; Kim, H.J.; Kim, H.J.; Kim, D.E. Tribology of Graphene: A Review. Int. J. Precis. Eng. Manuf. 2014, 15, 577–585. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L.; Chen, G. Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 2011, 41, 209–215. [Google Scholar] [CrossRef]
- Khare, V.; Pham, M.Q.; Kumari, N.; Yoon, H.S.; Kim, C.S.; Park, J.I.; Ahn, S.H. Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. Appl. Mater. Interfaces 2013, 5, 4063–4075. [Google Scholar] [CrossRef] [PubMed]
- Gebbie, M.A.; Valtiner, M.; Banquy, X.; Fox, E.T.; Henderson, W.A.; Israelachvili, J.N. Ionic Liquids Behave as Dilute Electrolyte Solutions. Proc. Natl. Acad. Sci. USA 2013, 110, 9674–9679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Pu, J.B.; Wang, L.P.; Xue, Q.J. Synergistic Effect of Hybrid Carbon Nanotube-Graphene Oxide as Nanoadditive Enhancing the Frictional Properties of Ionic Liquids in High Vacuum. ACS Appl. Mater. Interfaces 2015, 7, 8592–8600. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Xue, Q. DLC-based Solid-Liquid Synergetic Lubricating Coatings for Improving Tribological Behavior of Boundary Lubricated Surfaces under High Vacuum Condition. Wear 2011, 271, 889–898. [Google Scholar] [CrossRef]
- Frazier, R.M.; Daly, D.T.; Spear, S.K.; Rogers, R.D. Exfoliation of Graphite Using Ionic Liquids. U.S. Provisional Patent US20110319554 A1, 25 November 2008. [Google Scholar]
- Wang, X.; Fulvio, P.F.; Baker, G.A.; Veith, G.M.; Unocic, R.R.; Mahurin, S.M.; Chi, M.; Dai, S. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem. Commun. 2010, 46, 4487–4489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, T.; Ding, K.; Hu, B.; Hou, M.; Han, B. Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem. Commun. 2010, 46, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Pu, J.B.; Wang, L.P.; Xue, Q.J. Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum. Carbon 2014, 80, 734–745. [Google Scholar] [CrossRef]
- Fan, X.Q.; Wang, L.P. High-performance lubricant additives based on modified graphene oxide by ionic liquids. J. Colloid Interface Sci. 2015, 452, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pu, J.; Wang, L.; Xue, Q. Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications. J. Mater. Chem. A 2013, 1, 3797–3809. [Google Scholar] [CrossRef]
- Kandanur, S.S.; Rafiee, M.A.; Yavari, F.; Schrameyer, M.; Yu, Z.Z.; Blanchet, T.A.; Koratkar, N. Supresion of wear in graphene polymer composites. Carbon 2012, 50, 3178–3183. [Google Scholar] [CrossRef]
- Choudhary, S.; Mungse, H.P.; Khatri, O.P. Dispersion of wear in grapheme polymer composites. J. Mater. Chem. 2012, 22, 21032–21039. [Google Scholar] [CrossRef]
- Saurín, N.; Sanes, J.; Bermúdez, M.D. Effect of Graphene and ionic liquid additives on the tribological performance of epoxy resin. Tribol. Lett. 2014, 56, 133–142. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saurín, N.; Espinosa, T.; Sanes, J.; Carrión, F.-J.; Bermúdez, M.-D. Ionic Nanofluids in Tribology. Lubricants 2015, 3, 650-663. https://doi.org/10.3390/lubricants3040650
Saurín N, Espinosa T, Sanes J, Carrión F-J, Bermúdez M-D. Ionic Nanofluids in Tribology. Lubricants. 2015; 3(4):650-663. https://doi.org/10.3390/lubricants3040650
Chicago/Turabian StyleSaurín, Noelia, Tulia Espinosa, José Sanes, Francisco-José Carrión, and María-Dolores Bermúdez. 2015. "Ionic Nanofluids in Tribology" Lubricants 3, no. 4: 650-663. https://doi.org/10.3390/lubricants3040650
APA StyleSaurín, N., Espinosa, T., Sanes, J., Carrión, F. -J., & Bermúdez, M. -D. (2015). Ionic Nanofluids in Tribology. Lubricants, 3(4), 650-663. https://doi.org/10.3390/lubricants3040650