Investigation on Microstructure, Thermal Fatigue Resistance, and Tribological Behavior of Mo2FeB2-Based Cermet Coating on GCr15 Steel Substrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization
3. Results and Discussion
3.1. Cross-Sectional Morphology
3.2. X-Ray Diffraction
3.3. Thermal Fatigue Resistance
3.4. Wear Resistance
3.5. Wear Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, X.; Qin, Y.; Han, X.; Chen, H.; Ruan, X.; Zhang, H.; Jiao, C.; Mao, R.; Hao, J.; Zhao, S.; et al. Comparing the tribological behavior of polycrystalline diamonds against steel GCr15 and ceramic Si3N4: Friction and wear. Diam. Relat. Mater. 2024, 141, 110550. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Fan, Z.; Jiang, D.; Shuai, S.; Tu, T.; Ren, Z. Effects of cooling rate on isothermal spheroidizing annealing of hot-rolled GCr15 bearing steel. J. Mater. Res. Technol. 2024, 31, 329–337. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, N.; Ma, Z.; Wei, S.; Li, J. Effect of magnesium on primary carbides in GCr15 bearing steel. Mater. Today Commun. 2024, 41, 110651. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, X.; Liu, X.; Li, D.; Zhou, Y. Fabrication of gradient structure for enhancing wear resistance of GCr15 bearing steel friction shim. Wear 2024, 552–553, 205449. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Liu, H.; He, T.; Deng, S.; Tian, H.; Cao, W. Microstructure effects on improving rolling contact fatigue by a double-quenching heat treatment process for GCr15 steel. Tribol. Int. 2024, 194, 109519. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H. Influence of laser remelting on the microstructure and properties of Mo2FeB2 ternary boride coatings prepared by laser cladding. Mater. Today Commun. 2024, 41, 110548. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, Q.; Xu, Y.; Cao, Y. Predicting potential hard materials in NbB ternary boride: First-principles calculations. Int. J. Refract. Met. Hard Mater. 2025, 126, 106927. [Google Scholar] [CrossRef]
- Gupta, S.; Zhang, J.; Ngige, G.; Dey, M.; Malusky, M.; Samanta, B.; Çakır, D.; Barua, R. Synthesis and characterization of a remarkable ternary boride: Mo2NiB2. Open Ceram. 2024, 18, 100556. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Zhou, S.; Wei, Y.; Han, Z.; Cao, Y. Theoretical insights on structural, mechanical and thermodynamic properties of MCoB (M=Nb, Mo, and W) ternary borides under high pressure. Solid State Sci. 2022, 130, 106931. [Google Scholar] [CrossRef]
- Feng, K.; Yan, X.; Liu, Y.; Du, Y.; Chang, K. The self-lubrication of WCoB synthesized by in-situ reaction enhancing the wear resistance of the WC-Co system. Ceram. Int. 2024, 50, 35474–35483. [Google Scholar] [CrossRef]
- Zhu, X.; Pan, Y.; Zhang, H.; Ke, D. Effect of Ni content on the microstructure and properties of WCoB-TiC cermets. Int. J. Refract. Met. Hard Mater. 2023, 117, 106381. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, H.; Zhang, H.; Zhang, L.; Yu, F.; Li, W.; Zhang, X. A novel wear-resistant and corrosion-resistant Mo2NiB2–Ni cermet coating prepared using fast hot pressing sintering. Mater. Chem. Phys. 2024, 318, 129242. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Huang, Z.; Ma, H.; Liu, Y.; Jie, W.; Zhou, L. Effect of Ni content on the corrosion behavior of Mo2NiB2–Ni cermet in H2SO4 solution. Ceram. Int. 2023, 49, 36289–36298. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y. In-situ synthesized WC reinforcement phase on microstructural evolution, toughness and tribological properties of Mo2FeB2-based composite coatings fabricated by laser cladding. J. Mater. Res. Technol. 2025, 34, 677–690. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Zhang, Y.; Lian, G.; Cao, Q.; Que, L. A comparative study on microstructure and tribological characteristics of Mo2FeB2/WC self-lubricating composite coatings with addition of WS2, MoS2, and h-BN. Mater. Des. 2023, 225, 111581. [Google Scholar] [CrossRef]
- Dhand, V.; Lim, J.; Bharadwaj, S.; Kim, S.; Rhee, K. Sol–gel combustion derived novel ternary transition metal boride-anisotropic magnetic powders and their magnetic property. J. Mater. Res. Technol. 2023, 24, 7219–7228. [Google Scholar] [CrossRef]
- Cao, Z.; Jian, Y.; Zhao, Z.; Xiao, P.; Xu, L.; Huang, Z. Effect of V doping on the microstructure and mechanical properties of Mo2FeB2-based cermets and investigation on the enhancement mechanism. J. Alloys Compd. 2023, 931, 167545. [Google Scholar] [CrossRef]
- Lang, X.-Y.; Zhang, G.-H. Microstructure and mechanical properties of Mo2FeB2-316SS cermets prepared by vacuum sintering. J. Alloys Compd. 2025, 1027, 180626. [Google Scholar]
- Li, B.; Zheng, Y.; Yang, M.; Wu, H.; Jiang, Z.; Xu, X.; Yang, M. Effect of W addition on microstructure and mechanical properties of Mo2FeB2-based cermets and first-principles study. Ceram. Int. 2025, 51, 24999–25007. [Google Scholar] [CrossRef]
- Wei, X.; Chen, Z.; Zhong, J.; Xiang, Y. Feasibility of preparing Mo2FeB2-based cermet coating by electrospark deposition on high speed steel. Surf. Coat. Technol. 2016, 296, 58–64. [Google Scholar] [CrossRef]
- Ren, X.; Yu, L.; Liu, Y.; Li, H.; Wu, J.; Liu, Z. Effects of extra boron addition on the liquid-state sintering process and properties of hard Mo2FeB2-based cermets. Int. J. Refract. Met. Hard Mater. 2016, 61, 207–214. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, Y.; Liu, W.; Zheng, J.; Xiong, W. Effect of V content on the microstructure and mechanical properties of Mo2FeB2 based cermets. Mater. Des. (1980–2015) 2010, 31, 2680–2683. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Zhou, W.; Zhang, G.; Ke, Z.; Dong, Z.; Feng, P. Effects of Cr content on the microstructure and mechanical properties of Mo2FeB2-based cermets prepared via vacuum sintering. Vacuum 2018, 155, 509–513. [Google Scholar] [CrossRef]
- Li, Y.; Cui, X.; Jin, G.; Cai, Z.; Tan, N.; Lu, B.; Gao, Z. Interfacial bonding properties between cobalt-based plasma cladding layer and substrate under tensile conditions. Mater. Des. 2017, 123, 54–63. [Google Scholar] [CrossRef]
- Yu, H.; Li, D.; Ma, M.; Zheng, B.; Zuo, X.; You, J.; Zhang, N. Improving microstructure and frictional wear behavior of plasma cladding FeCoCrNiMo high-entropy alloy layers by annealing treatment. Mater. Today Commun. 2024, 41, 110737. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, W.; Tang, J.; Wen, X.; Deng, R.; Yan, J.; Huang, B.; Zhuang, J. Microstructure and performance of AlCoCrFeNiCu(CeO2)X high-entropy alloy coatings by plasma cladding. J. Alloys Compd. 2024, 1003, 175623. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, X.; Yan, J.; Huang, B.; Zhuang, J. Microstructure and wear resistance of AlCoCrFeNiCuSnX high-entropy alloy coatings by plasma cladding. Vacuum 2023, 214, 112176. [Google Scholar] [CrossRef]
- Wu, W.; Ye, S.; Wang, R.; Zhang, C.; Zhang, Y.; Lu, X. Microstructure and wear behavior of plasma cladded Ni-based alloy coating on copper under different preheating temperature. J. Mater. Res. Technol. 2023, 23, 1609–1617. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, X.; Huang, B.; Zhuang, J. Microstructure, hardness and corrosion properties of AlCoCrFeNi2.1YHf high-entropy alloy coating prepared by plasma cladding. Mater. Lett. 2023, 330, 133356. [Google Scholar] [CrossRef]
- Huang, S.G.; Liu, R.L.; Li, L.; Van der Biest, O.; Vleugels, J. NbC as grain growth inhibitor and carbide in WC–Co hardmetals. Int. J. Refract. Met. Hard Mater. 2008, 26, 389–395. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chen, S.-L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. J. Alloys Compd. 2014, 585, 407–413. [Google Scholar] [CrossRef]
- Tiwari, A.; Seman, S.; Singh, G.; Jayaganthan, R. Nanocrystalline cermet coatings for erosion–corrosion protection. Coatings 2019, 9, 400. [Google Scholar] [CrossRef]















| Element | Mo | B | Si | Cr | C | Ni | Fe |
|---|---|---|---|---|---|---|---|
| wt.% | 35.0 | 4.0 | 1.0 | 10.0 | 0.5 | 2.0 | Rest |
| C | Si | Mn | S | P | Cr | Mo | Ni | Fe |
|---|---|---|---|---|---|---|---|---|
| 0.95~1.05 | 0.15~0.35 | 0.20~0.40 | ≤0.02 | ≤0.027 | 1.30~1.65 | ≤0.10 | ≤0.30 | Rest |
| Nozzle Height (mm) | Voltage (V) | Current (A) | Plasma Gas Flow (L/min) | Powder Gas Flow (L/min) | Powder Feeding (g/min) | Cladding Speed (mm/min) |
|---|---|---|---|---|---|---|
| 10 | 30 | 100 | 1.5 | 4 | 10 | 100 |
| Point | C | Si | V | Cr | Fe | Mo |
|---|---|---|---|---|---|---|
| 1 | 27.56 | 0.22 | 1.74 | 8.83 | 25.32 | 36.34 |
| 2 | 17.83 | 2.68 | 0.66 | 8.80 | 63.70 | 6.34 |
| 3 | 23.78 | 0.89 | 1.46 | 10.30 | 35.90 | 27.67 |
| 4 | 27.04 | 1.05 | 1.58 | 9.25 | 34.92 | 26.17 |
| 5 | 38.35 | 1.74 | 0.93 | 6.79 | 45.63 | 6.56 |
| Mass Loss (mg) | Wear Time (h) | |||
|---|---|---|---|---|
| 1 | 3 | 5 | 8 | |
| Cladding layer | 1.9 | 4.6 | 6.8 | 9.6 |
| GCr15 steel | 7.8 | 19.6 | 31.1 | 43.7 |
| Mass Loss (mg) | Load (N) | ||||
|---|---|---|---|---|---|
| 100 | 150 | 200 | 250 | 300 | |
| Cladding layer | 1.9 | 2.8 | 3.2 | 3.4 | 3.5 |
| GCr15 steel | 7.8 | 12.6 | 15.7 | 18.3 | 20.3 |
| Mass Loss (mg) | Rotation Speed (rpm) | ||||
|---|---|---|---|---|---|
| 100 | 150 | 200 | 250 | 300 | |
| Cladding layer | 1.9 | 1.7 | 1.5 | 1.4 | 1.3 |
| GCr15 steel | 7.8 | 8.5 | 9.2 | 10.3 | 11.5 |
| Point | C | O | Cr | Fe | Mo |
|---|---|---|---|---|---|
| 1 | 15.38 | 19.37 | 14.06 | 38.44 | 12.76 |
| 2 | 11.46 | 35.08 | 14.37 | 34.72 | 4.38 |
| 3 | 10.86 | 4.73 | 16.10 | 63.59 | 4.72 |
| 4 | 8.73 | 35.53 | 19.41 | 35.92 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Zhang, Y.; Jin, L.; Zhang, B.; Zhang, Y. Investigation on Microstructure, Thermal Fatigue Resistance, and Tribological Behavior of Mo2FeB2-Based Cermet Coating on GCr15 Steel Substrate. Lubricants 2026, 14, 5. https://doi.org/10.3390/lubricants14010005
Zhang H, Zhang Y, Jin L, Zhang B, Zhang Y. Investigation on Microstructure, Thermal Fatigue Resistance, and Tribological Behavior of Mo2FeB2-Based Cermet Coating on GCr15 Steel Substrate. Lubricants. 2026; 14(1):5. https://doi.org/10.3390/lubricants14010005
Chicago/Turabian StyleZhang, Hao, Yang Zhang, Lufan Jin, Binglin Zhang, and Yu Zhang. 2026. "Investigation on Microstructure, Thermal Fatigue Resistance, and Tribological Behavior of Mo2FeB2-Based Cermet Coating on GCr15 Steel Substrate" Lubricants 14, no. 1: 5. https://doi.org/10.3390/lubricants14010005
APA StyleZhang, H., Zhang, Y., Jin, L., Zhang, B., & Zhang, Y. (2026). Investigation on Microstructure, Thermal Fatigue Resistance, and Tribological Behavior of Mo2FeB2-Based Cermet Coating on GCr15 Steel Substrate. Lubricants, 14(1), 5. https://doi.org/10.3390/lubricants14010005

