Study on Secondary Remelting Modification of Laser Cladding Ni60/WC Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Method
3. Results and Discussion
3.1. Macrogram
3.2. Physical Phase Analysis
3.3. Micrograph Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Findik, F. Laser cladding and applications. Sustain. Eng. Innov. 2023, 5, 1–14. [Google Scholar] [CrossRef]
- Zeng, C.; Tian, W.; Liao, W.H.; Hua, L. Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf. Coat. Technol. 2016, 294, 122–130. [Google Scholar] [CrossRef]
- Chen, C.; Feng, A.; Wei, Y.; Wang, Y.; Pan, X.; Song, X. Effects of WC particles on microstructure and wear behavior of laser cladding Ni60 composite coatings. Opt. Laser Technol. 2023, 163, 109425. [Google Scholar] [CrossRef]
- Wu, T.; Shi, W.; Xie, L.; Gong, M.; Huang, J.; Xie, Y.; He, K. Study on the effect of Ni60 transition coating on microstructure and mechanical properties of Fe/WC composite coating by laser cladding. Opt. Laser Technol. 2023, 163, 109387. [Google Scholar] [CrossRef]
- Ping, X.; Fu, H.; Sun, S.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Effect of Nb addition on microstructure and properties of laser cladding NiCrBSi coatings. Trans. IMF 2018, 96, 304–312. [Google Scholar]
- Zhao, J.; Li, R.; Feng, A.; Feng, H. Effect of rare earth La2O3 particles on structure and properties of laser cladding WC-Ni60 composite coatings. Surf. Coat. Technol. 2024, 479, 130569. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J.; Zhao, Z. Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy. J. Alloys Compd. 2017, 692, 989–996. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, J.; Li, M.; Zhao, Q.; Ma, H.; Jia, X.; Zhang, H. Advances in surface laser cladding remanufacturing of shaft parts. Manuf. Technol. 2023, 23, 564–578. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.H.; Han, B.; Lin, J.Y.; Han, X.R. Effects of Process Parameters on the Structure and Hardness of Components in Laser Direct Metal Forming. IOP Conf. Ser. Mater. Sci. Eng. 2019, 631, 022028. [Google Scholar] [CrossRef]
- Wu, X.; Chen, J.; Huang, J.; Shi, W.; Wang, Q.; An, F.; Wu, J. Laser-Melted Wc/Ni-Based Coating Remelting Study on Q235 Steel Surface. Coatings 2024, 14, 1172. [Google Scholar] [CrossRef]
- Lee, C.; Park, H.; Yoo, J.; Lee, C.; Woo, W.; Park, S. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+ NiCr. Appl. Surf. Sci. 2015, 345, 286–294. [Google Scholar] [CrossRef]
- Brückner, F.; Lepski, D.; Beyer, E. Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding. J. Therm. Spray Technol. 2007, 16, 355–373. [Google Scholar] [CrossRef]
- Yu, Z.; Li, L.; Zhang, D.; Shi, G.; Yang, G.; Xu, Z.; Zhang, Z. Study of cracking mechanism and wear resistance in laser cladding coating of Ni-based alloy. Chin. J. Mech. Eng. 2021, 34, 92. [Google Scholar] [CrossRef]
- Cao, Y.; Yan, K.; Shi, W.; Zhou, R.; Li, B.; Qin, J. Experimental Study on the Microstructure and Tribological Properties of Laser-Clad Ni60-WC Composite Coatings. Materials 2024, 17, 4638. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Li, J.; Geng, S.; Jing, L.; Skuratov, V. Reinforcements/matrix micro-interface evolution and properties of in-situ Ni60A/WC coatings prepared by laser cladding. Surf. Coat. Technol. 2024, 484, 130834. [Google Scholar] [CrossRef]
- Chen, H.; Lu, Y.; Wu, K.; Wang, X.; Liu, D. Effect of WC addition on TiC reinforced Fe matrix composites produced by laser deposition. Surf. Coat. Technol. 2022, 434, 128185. [Google Scholar] [CrossRef]
- Ning, J.; Lan, Q.; Zhu, L.; Xu, L.; Yang, Z.; Xu, P.; Xin, B. Microstructure and mechanical properties of SiC-reinforced Inconel 718 composites fabricated by laser cladding. Surf. Coat. Technol. 2023, 463, 129514. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Y.; Cai, Z.; He, G.; Xu, K.; Chen, Y.; Wang, H. Preparation of NiCrBSi-WC/Co coatings by stable magnetic field assisted supersonic plasma spraying and its wear resistance mechanism. Mater. Charact. 2022, 194, 112433. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, B.; Liu, X.; Zeng, X. Investigation on the Ni60-WC composite coatings deposited by extreme-high-speed laser-induction hybrid cladding technology: Forming characteristics, microstructure and wear behaviors. Surf. Coat. Technol. 2023, 473, 130033. [Google Scholar] [CrossRef]
- Mahmood, T.; Mian, A.; Amin, M.R.; Auner, G.; Witte, R.; Herfurth, H.; Newaz, G. Finite element modeling of transmission laser microjoining process. J. Mater. Process. Technol. 2007, 186, 37–44. [Google Scholar] [CrossRef]
- Heng, W.; Pang, M. Microstructure and wear resistance of laser cladding NiCrAlY/TC4 composite coatings with in-situ synthesized transition layer by modulating thermal boundary in nitrogen atmosphere. J. Mater. Sci. 2023, 58, 16119–16143. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Wang, L.; Xiao, T.; Meng, X.; Zhang, Z. Mechanism of the high-speed and long-run-out landslide considering the evolution of the frictional heat in the sliding zone. Nat. Hazards 2024, 120, 3299–3317. [Google Scholar] [CrossRef]
- Liang, W.; Yang, Y.; Qi, K.; Jin, K.; Xiong, L. Quality evaluation of multi-path laser cladding coatings based on integrated fuzzy comprehensive evaluation and improved analytical hierarchy process method. Surf. Coat. Technol. 2021, 427, 127816. [Google Scholar] [CrossRef]
- Du, Z.; Hu, Z.; Feng, Y.; Mo, F. The Effect of Powder Composition on the Microstructure and Corrosion Resistance of Laser Cladding 60NiTi Alloy Coatings on SS 316L. Metals 2021, 11, 1104. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Chen, D.; Huang, J.; Shi, W.; An, F.; Wu, X. Study on the Effect of CeO2 on the Performance of WC + Ni60 Laser Cladding Coating. Lubricants 2025, 13, 24. [Google Scholar] [CrossRef]
- Fan, H.; Yang, L.; Zhang, D.; Wu, H.; Yang, Y.; Wei, Z.; Liu, S. Enhancing epoxy coating corrosion resistance with a novel MoS2-modified polydopamine functionalized graphene oxide nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2024, 683, 133080. [Google Scholar] [CrossRef]
- Yu, S.; Sun, W.; Yong, H.; Yu, J.; Wu, Y.; Meng, Y. A variable diameter spiral path planning strategy for large eccentricity variable curvature rotating parts with focus on thickness and performance control in cladding. Surf. Coat. Technol. 2025, 495, 131487. [Google Scholar] [CrossRef]
- Huang, D.; Xu, Z.; Jia, X.; Yu, H.; He, Y.; Dong, Z.; Zhang, H. Uniform microstructure and excellent corrosion resistance of HV0.2OF-Sprayed CoCrNi medium-entropy alloy coating in fluoride ion environment. Met. Mater. Int. 2024, 30, 61–76. [Google Scholar] [CrossRef]
- He, X.; Kong, D.; Song, R. Microstructures and properties of laser cladding Al-TiC-CeO2 composite coatings. Materials 2018, 11, 198. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, B.; Yi, X.; Wang, Q.; Chen, W.; Ye, J. Probability-based horizontal fire spread scenarios in framed structures and data-driven prediction model. J. Build. Eng. 2025, 101, 111798. [Google Scholar] [CrossRef]
Element | C | Cr | B | Mn | Si | Fe | P | S | Ni |
---|---|---|---|---|---|---|---|---|---|
Ni60 | 0.8–1.2 | 14–16 | 3–3.5 | - | 3.5–4.0 | 14–15 | 0.02 | 0.02 | Bal |
Q235 | 0.22 | - | - | 0.3–0.7 | 0.35 | Bal | 0.04 | 0.05 | - |
Element | C | Cr | Fe | Ni | W | |
---|---|---|---|---|---|---|
Spectrum A | Weight % | 1.80 | 12.64 | 23.63 | 27.45 | 29.93 |
Atomic % | 8.89 | 14.42 | 25.10 | 27.75 | 9.66 | |
Spectrum B | Weight % | 1.71 | 11.54 | 27.55 | 30.81 | 27.19 |
Atomic % | 2.45 | 14.18 | 31.53 | 33.54 | 9.45 | |
Spectrum C | Weight % | 0.42 | 11.43 | 19.62 | 20.73 | 45.32 |
Atomic % | 2.69 | 16.87 | 26.97 | 27.12 | 18.93 | |
Spectrum D | Weight % | 1.03 | 14.39 | 40.01 | 19.58 | 23.18 |
Atomic % | 5.19 | 16.77 | 43.43 | 20.22 | 7.64 |
Sample | None | S 600 | S 800 |
---|---|---|---|
Ecorr/V | −0.039 | −0.012 | −0.038 |
Icorr/(A.cm−2) | 8.11 × 10−4 | 2.86 × 10−5 | 2.64 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, G.; Wu, J.; Huang, J.; Shi, W.; An, F.; Wu, X. Study on Secondary Remelting Modification of Laser Cladding Ni60/WC Composite Coatings. Lubricants 2025, 13, 222. https://doi.org/10.3390/lubricants13050222
Zhang J, Wang G, Wu J, Huang J, Shi W, An F, Wu X. Study on Secondary Remelting Modification of Laser Cladding Ni60/WC Composite Coatings. Lubricants. 2025; 13(5):222. https://doi.org/10.3390/lubricants13050222
Chicago/Turabian StyleZhang, Jianwen, Gui Wang, Jingquan Wu, Jiang Huang, Wenqing Shi, Fenju An, and Xianglin Wu. 2025. "Study on Secondary Remelting Modification of Laser Cladding Ni60/WC Composite Coatings" Lubricants 13, no. 5: 222. https://doi.org/10.3390/lubricants13050222
APA StyleZhang, J., Wang, G., Wu, J., Huang, J., Shi, W., An, F., & Wu, X. (2025). Study on Secondary Remelting Modification of Laser Cladding Ni60/WC Composite Coatings. Lubricants, 13(5), 222. https://doi.org/10.3390/lubricants13050222