Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process
Abstract
:1. Introduction
2. Computational Model
2.1. Physical Model
2.2. Theoretical Model
2.2.1. Perturbed Pressure Control Equation
2.2.2. Dynamic Mathematical Model
3. Solution Methodology
3.1. Boundary Conditions
3.2. Computational Procedure
3.3. Dynamic Characteristics Coefficients of the Gas Film
3.4. Tracking Parameters of the Stationary Ring
4. Results and Discussion
4.1. Effect of Spiral Angle on Tracking Performance
4.2. The Influence of Groove Depth on Tracking Characteristics
4.3. The Influence of Groove Number on Tracking Characteristics
4.4. The Influence of Balance Coefficient on Tracking Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zhang, H.Q.; Cao, H.J. Flow dynamics of a spiral groove dry gas seals. Chin. J. Mech. Eng. 2013, 26, 78–84. [Google Scholar] [CrossRef]
- Zhou, J.F.; Gu, B.Q. Characteristics of fluid film in optimized spiral groove mechanical seal. Chin. J. Mech. Eng. 2007, 20, 54–61. [Google Scholar] [CrossRef]
- Ruan, B. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals. J. Tribol. 2002, 124, 186–195. [Google Scholar] [CrossRef]
- Miller, B.A.; Green, I. Semi-analytical dynamic analysis of spiral grooved mechanical gas face seals. J. Tribol. 2003, 125, 403–413. [Google Scholar] [CrossRef]
- Yelma, S.S.; Miller, B.A.; Landers, R.G. Clearance regulation of mechanical gas face seals: Part II—Analysis and control. Tribol. Trans. 2006, 49, 373–386. [Google Scholar] [CrossRef]
- Zhang, H.; Landers, R.G.; Miller, B.A. Adaptive control of mechanical gas face seals with rotor runout and static stator misalignment. J. Dyn. Syst. Meas. Control 2010, 132, 041009. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.B.; Peng, X.D. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seals. Chin. J. Mech. Eng. 2016, 29, 1226–1233. [Google Scholar] [CrossRef]
- Lee, S.C.; Zheng, X.L. Analyses of both steady behavior and dynamic tracking of non-contacting spiral-grooved gas face seals. Comput. Fluids 2013, 88, 326–333. [Google Scholar] [CrossRef]
- Blasiak, S.; Zahorulko, A.V. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces. Tribol. Int. 2016, 94, 126–137. [Google Scholar] [CrossRef]
- Yang, Q. Study on Dynamic Performance of Supercritical Carbon Dioxide Dry Gas Seal. Ph.D. Thesis, China University of Petroleum (East China), Qingdao, China, 2021. [Google Scholar]
- Chen, Y.; Peng, X.D.; Li, J.Y.; Jiang, J.B. The influence of structure parameters of spiral groove on dynamic characteristics of dry gas seals. Tribology 2016, 36, 397–405. [Google Scholar]
- Chen, Y.; Peng, X.D.; Jiang, J.B.; Meng, X.K.; Li, J.Y. The influence of flexibly mounted ways of seal rings on dynamic tracking of dry gas seal. Tribology 2017, 37, 139–147. [Google Scholar]
- Teng, N.M.; Jiang, J.B.; Peng, X.D.; Wu, F.; Zhao, W.J.; Li, J.Y. Analytical study on axial free vibration and forced vibration of dry gas seal based on Laplace transform. J. Vib. Shock 2022, 41, 148–160. [Google Scholar]
- Fairuz, Z.M.; Jahn, I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals. Tribol. Int. 2016, 102, 333–347. [Google Scholar] [CrossRef]
- Du, Q.; Gao, K.; Zhang, D.; Xie, Y. Effects of grooved ring rotation and working fluid on the performance of dry gas seal. Int. J. Heat Mass Tran. 2018, 126, 1323–1332. [Google Scholar] [CrossRef]
- Deng, Q.G.; Song, P.Y.; Xu, H.J.; Mao, W.Y.; Sun, X.J. Analysis on the start-up characteristics of CO2 dry gas seals based on the F-K slip flow model at high pressure. Adv. Mech. Eng. 2023, 15, 168781322311633. [Google Scholar] [CrossRef]
- Deng, Q.G.; Song, P.Y.; Mao, W.Y.; Xu, H. Fitting expression of relationship between gas viscosity, and temperature and/or pressure. J. Drain. Irrig. Mach. Eng. 2017, 35, 144–151. [Google Scholar]
- Green, I.; Etsion, I. pressure and squeeze effects on the dynamic characteristics of elastomer O-ring under small reciprocating motion. Tribology 1986, 108, 439–444. [Google Scholar] [CrossRef]
- Meng, Q.S.; Hou, Y.F. Numerical simulation on transient behavior of hydro-viscous drive speed regulation start. Tribology 2009, 29, 418–424. [Google Scholar]
- Liu, Y.C. Research on the Sealing Characteristics of End Face Gas Film. Ph.D. Thesis, Beihang University, Beijing, China, 1999. [Google Scholar]
- Liu, Y.; Liu, W.; Li, Y.J.; Liu, X.; Wang, Y. Mechanism of a wavy-tilt-dam mechanical seal under different working conditions. Tribol. Int. 2015, 90, 43–54. [Google Scholar] [CrossRef]
- Chen, Y. Theoretical and Experimental Studies of Dynamic Performance of Spiral Groove Dry Gas Seals at High Speeds. Ph.D. Thesis, Zhejiang University of Technology, Hangzhou, China, 2018. [Google Scholar]
Polynomial Coefficients | i = h | i = ω | i = Λ |
---|---|---|---|
ci1 | −62.26 | −42.98 | −19.63 |
ci2 | 148.64 | 2.87 × 103 | 1.31 × 103 |
ci3 | −142.58 | −4.6 × 103 | −2.1 × 103 |
ci4 | 72.2 | −2.92 × 103 | −1.34 × 103 |
ci5 | −24.31 | 4.81 × 103 | 2.2 × 103 |
ci6 | 8.31 | 1.87 × 103 | 8.54 × 103 |
ci7 | 0.9 | 1.67 × 102 | 76.1431 |
SSE | 3.79 × 10−5 | 1.87 × 10−3 | 3.89 × 10−4 |
RMSE | 1.59 × 10−3 | 1.11 × 10−2 | 5.1 × 10−3 |
Coefficients | i = K, j = zz | i = C, j = zz | i = K, j = αα | i = C, j = αα | i = K, j = αβ | i = C, j = αβ |
---|---|---|---|---|---|---|
aij1 | 14.5681 | 6.83 × 1011 | 2.972 | 48.0122 | 0.4906 | −1.06 × 1014 |
aij2 | 25.8175 | 1.54 × 109 | 9.9103 | 1.0582 | 15.0778 | 0 |
aij3 | 41.0531 | −0.1847 | 27.2903 | 0.9252 | 0.0517 | −2.489 |
aij4 | 0 | 16.0941 | 0.2264 | 2.49 × 1014 | 0.6853 | 0 |
aij5 | 0 | 0 | 0.6595 | −1.5237 | 1.3948 | 0 |
aij6 | 0 | 0 | 0 | 0 | 3.3057 | 0 |
aij7 | 0 | 0 | 0 | 0 | 0 | 0 |
bij1 | −0.0113 | −1.1545 | 0.0785 | −0.1142 | −0.0063 | −2.7463 |
bij2 | 0.1667 | −3.3627 | 0.1266 | 0.0381 | −0.1518 | −0.2855 |
bij3 | 0.8107 | 0.4562 | 0.7473 | 0.0225 | 0.079 | 0.7463 |
bij4 | 0 | −7.563 | 0.0342 | −117.4525 | 0.0218 | 0 |
bij5 | 0 | 0 | 0.0426 | 0.2475 | 0.0619 | 0 |
bij6 | 0 | 0 | 0 | 0 | 0.7102 | 0 |
bij7 | 0 | 0 | 0 | 0 | 0.7606 | 0 |
dij1 | 0.2134 | 0.2288 | 0.1426 | 0.0819 | 0.0153 | 0.4856 |
dij2 | 0.3703 | 0.7747 | 0.3419 | 0.0601 | 0.1158 | 0.009 |
dij3 | 0.6641 | 0.1968 | 0.9848 | 0.1519 | 0.0538 | 0.9844 |
dij | 0 | 11.0114 | 0.0053 | 21.1259 | 0.1596 | 0 |
dij5 | 0 | 0 | 0.062 | 0.4267 | 0.3808 | 0 |
dij6 | 0 | 0 | 0 | 0 | 1.4309 | 0 |
dij7 | 0 | 0 | 0 | 0 | 0.0022 | 0 |
SSE | 0.060871 | 0.0063894 | 0.017086 | 0.0079032 | 0.00014378 | 0.041877 |
RMSE | 0.068428 | 0.025277 | 0.049405 | 0.033601 | 0.011991 | 0.056757 |
Parameters | Value | Parameter | Value |
---|---|---|---|
Outer radius ro/mm | 77.78 | Spiral groove angle αα/° | 15 |
Inner radius ri/mm | 58.42 | Number of grooves Ng/μm | 12 |
Groove root radius rg/mm | 69 | Groove depth hg/μm | 5 |
Balance radius rb/mm | 61.3 | Outlet pressure pi/MPa | 0.101 |
Groove-to-land ratio γ | 1 | Inlet pressure po/MPa | 4.5852 |
Moment of inertia Is/kg·m2 | 1.33 × 10−4 | Gas constant Rr/J·(mol·K)−1 | 8.3145 |
Stationary ring mass ms/kg | 0.17 | Gas viscosity η/10−6 Pa·s | 20.275 |
Spring proportional pressure psp/MPa | 0.03 | CO2 molecular mass M/g·mol−1 | 44 |
Axial amplitude arz/μm | 20 | CO2 temperature T/K | 400 |
Angular axial amplitude ar/μrad | 50 | Rotating ring Poisson’s ratio ν1 | 0.14 |
O-ring damping co/N·s·m−1 | 1000 | Stationary ring Poisson’s ratio ν2 | 0.29 |
Spring stiffness ks/N·m−1 | 11.419 × 106 | Disturbance frequency fz | 2π |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Zhou, Y.; Yu, P.; Xu, H.; Sun, X.; Mao, W. Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process. Lubricants 2025, 13, 201. https://doi.org/10.3390/lubricants13050201
Deng Q, Zhou Y, Yu P, Xu H, Sun X, Mao W. Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process. Lubricants. 2025; 13(5):201. https://doi.org/10.3390/lubricants13050201
Chicago/Turabian StyleDeng, Qiangguo, Yong Zhou, Pingyang Yu, Hengjie Xu, Xuejian Sun, and Wenyuan Mao. 2025. "Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process" Lubricants 13, no. 5: 201. https://doi.org/10.3390/lubricants13050201
APA StyleDeng, Q., Zhou, Y., Yu, P., Xu, H., Sun, X., & Mao, W. (2025). Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process. Lubricants, 13(5), 201. https://doi.org/10.3390/lubricants13050201