Parameter Optimization for the Improvement of Tribological Behavior of Textured Tapered Roller Bearings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Dimpled Textures
2.2. Orthogonal Experimental Design
2.3. Friction and Wear Test
3. Results and Analysis
3.1. Tribological Performance
3.2. Analysis of Average COF
Analysis of COF Range
4. Verification Test
4.1. COF and Wear Loss
4.2. Surface Morphology Analysis
5. Conclusions
- (1)
- Through the orthogonal test analysis, the R values reflecting the influence of pit diameter, pit depth, and pit distribution angle on the average COF are 0.56, 1.14, and 1.44, respectively. This clearly shows that the influence of the pit distribution angle on the average COF is the most significant, followed by the pit depth, and that the influence of the pit diameter is relatively small. The optimal combination of pit texture parameters is as follows: diameter 200 μm, depth 10 μm, and distribution angle 0.9°.
- (2)
- The dimple texture significantly reduces the COF of the bearing during operation, especially under the condition of insufficient oil lubrication. The optimized texture parameters effectively achieve a 43.6% reduction in COF, accelerate the stable transition of the bearing, and reduce friction wear.
- (3)
- The optimized texture design significantly reduces the wear. Compared with the G00 group, the wear of the optimized bearing in the G10 group is reduced by up to 75.7%. This shows that the surface texture design effectively improves the retention and distribution of the lubricant and reduces wear.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.B.; Liu, J.; Huang, S.H.; Pan, G. Friction moment calculation method for tapered roller bearings under combined loads. Sci. China-Technol. Sci. 2024, 67, 2565–2578. [Google Scholar] [CrossRef]
- Wang, X.H.; Bian, Q.; Gao, X.H.; Zhao, C.J.; Liu, M.H.; Xie, X.H.; Jiao, B.W. Study on the vibration characteristics of double-row tapered roller bearings for high-speed rail axle box. Ind. Lubr. Tribol. 2024, 76, 678–687. [Google Scholar]
- Ansari, A.K.; Kumar, P. Vibration and acoustics analyses of tapered roller bearing. J. Vib. Eng. Technol. 2023, 12, 2467–2484. [Google Scholar] [CrossRef]
- Wang, A.L.; Wang, J.G. Temperature distribution and scuffing of tapered roller bearing. Chin. J. Mech. Eng. 2024, 27, 1272–1279. [Google Scholar] [CrossRef]
- Liebrecht, J.; Si, X.; Sauer, B.; Schwarze, H. Investigation of drag and churning losses on tapered roller bearings. Stroj. Vestn.—J. Mech. Eng. 2015, 61, 399–408. [Google Scholar]
- Metcalfe, R.G.; Costanzi, R.; Horner, G.; Vance, J. Hydrogen embrittlement of a tapered roller bearing due to lubricant breakdown. Eng. Fail. Anal. 2022, 139, 106436. [Google Scholar] [CrossRef]
- Jain, A.; Singh, A.; Singh, A.P. Effect of tribological parameters on sliding wear and friction coefficient which relates to preload loss in tapered roller bearing. Ind. Lubr. Tribol. 2019, 71, 61–73. [Google Scholar] [CrossRef]
- El-Thalji, I.; Jantunen, E. A descriptive model of wear evolution in rolling bearings. Eng. Fail. Anal. 2014, 45, 204–224. [Google Scholar] [CrossRef]
- Zhou, R.; Li, M.; Liu, H.; Pan, W.; Zhang, R.F.; Liu, Y. Theoretical and experimental study on the evolution of contact load during wear failure of cylindrical roller bearings. Eng. Fail. Anal. 2025, 169, 109218. [Google Scholar]
- Hamilton, D.B.; Walowit, J.A.; Allen, C.M. A theory of lubrication by micro irregularities. J. Basic. Eng. 1966, 88, 177–185. [Google Scholar]
- Costa, H.L.; Hutchings, I.M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 2007, 40, 1227–1238. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Liu, X.J.; Liu, K. Effect of surface texture on the frictional properties of grease lubricated spherical plain bearings under reciprocating swing conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 122–135. [Google Scholar] [CrossRef]
- Long, R.S.; Shang, Q.Y.; Sun, S.N.; Wang, S.W.; Ma, C.; Zhang, J.W.; Marian, M. Influence of Monstera riedrichsthalii bionic textures on the tribological and vibration behavior of rolling bearings. Friction 2025, 13, 9440949. [Google Scholar] [CrossRef]
- Xiang, G.; Yang, T.Y.; Guo, J.; Wang, J.X.; Liu, B.; Chen, S.A. Optimization transient wear and contact performances of water-lubricated bearings under fluid-solid-thermal coupling condition using profile modification. Wear 2022, 502, 204379. [Google Scholar]
- Deng, L.F.; Su, J.; Jin, Z.Y. Effect of composite textured rough surfaces on the lubrication performance of cylindrical roller bearings. Ind. Lubr. Tribol. 2024, 76, 852–863. [Google Scholar] [CrossRef]
- Yin, B.F.; Zhou, H.Q.; Xu, B.; Jia, H.K. The influence of roughness distribution characteristic on the lubrication performance of textured cylinder liners. Ind. Lubr. Tribol. 2019, 71, 486–493. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Yang, J.M.; Shui, H.C.; Dong, C.C. Effect of roughness on sealing performance of oil seals with surface texture. Ind. Lubr. Tribol. 2019, 72, 525–532. [Google Scholar]
- Sun, S.N.; Long, R.S.; Zhang, Y.M.; Li, M.H. The influence of initial deflection angle on the tribological properties of gray cast iron rings with curve distributed pits under dry sliding. Proc. Inst. Mech. Eng. Part. J-J. Eng. Tribol. 2021, 235, 1659–1668. [Google Scholar]
- Lin, G.P.; Cai, Z.B.; Lu, B.W.; Gu, L.; Wang, Y.L.; Yan, X.C.; Qiu, H.; Guo, J.F.; Dong, Z.; Li, F.H. Enhanced wear resistance of laser cladded WC-Ni composite coatings by picosecond laser surface texturing. Tribol. Int. 2025, 204, 110517. [Google Scholar]
- Yan, X.F.; Yan, H.; Zhang, P.L.; Lu, Q.H.; Shi, H.C. Fabrication and tribological properties of bionic surface texture self-lubricating 60NiTi alloy via selective laser melting and infiltration. Tribol. Int. 2025, 202, 110364. [Google Scholar]
- Li, X.Y.; Liu, Y.B.; Huang, J.; Sang, D.Y.; Yang, K.; Ling, J.B. Influence of surface texture on pocket pairs lubrication performance of cylindrical roller bearings. Ind. Lubr. Tribol. 2024, 76, 1085–1097. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.M.; Gao, S.Z. Effects of surface texture on tribological performance and bonding strength of phosphate coatings in cylindrical thrust roller bearings. Ind. Lubr. Tribol. 2025, 77, 561–572. [Google Scholar] [CrossRef]
- Vidyasagar, K.E.C.; Pandey, R.K.; Kalyanasundaram, D. Improvement of deep groove ball bearing’s performance using a bionic textured inner race. J. Bionic Eng. 2021, 18, 974–990. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Grützmacher, P.G.; Gachot, C.; Costa, H.L. Surface Texturing in Machine Elements—A Critical Discussion for Rolling and Sliding Contacts. Adv. Eng. Mater. 2019, 21, 1900194. [Google Scholar] [CrossRef]
- Sun, S.N.; Long, R.S.; Jin, Z.H.; Zhang, Y.M.; Ju, Z.C.; Du, X.Y. Research on the friction and wear properties of dents textured rolling element bearings under dry wear. Coatings 2022, 12, 684. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Long, R.S.; Jin, Z.H.; Zhao, C.; Wang, M. Influence of the distribution of pits on the friction and wear performance of textured rolling bearings under starved lubrication. Lubricants 2023, 11, 197. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhang, Y.M.; Gao, S.Z. Analysis and evaluation of the synergistic effect of ceramic materials and surface texture on anti-abrasive particle wear under rolling conditions. Tribol. Int. 2024, 197, 109821. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhang, Y.M. Tribological and dynamic performance analysis of rolling bearings with varied surface textures operating under lubricant contamination. Wear 2023, 532, 205109. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhang, Y.M. Analysis of the tribological and dynamic performance of textured bearings under contaminated conditions. Tribol. Int. 2023, 187, 108732. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, C.; Zhao, H.J.; Ghazali, M.J.; Wei, Y.; Zhu, Z.F. Enhancement of thrust ball bearings performance through biomimetic composite textures: A comparative analysis under grease-starved lubrication condition. Tribol. Int. 2025, 204, 110483. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, C.; Teal, P.D.; Han, Y.; Xu, J.; Li, X.J. Investigation on the performances of thrust ball bearing with a novel oil self-transportation biomimetic composite guiding surface. Alex. Eng. J. 2025, 110, 579–594. [Google Scholar] [CrossRef]
- Napadłek, W. Analysis of selected properties 100CrMnSi6–4 surface layer after laser micro-smelting. Arch. Metall. Mater. 2017, 62, 757–762. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Pandey, R.K.; Agarwal, V.K. Performance studies of textured race ball bearing. Ind. Lubr. Tribol. 2019, 71, 1116–1123. [Google Scholar] [CrossRef]
- Xu, J.; Gao, X.; Dou, H.; Zhang, C.P.; Wang, W.; Liu, K. Improved cryogenic frictional properties of thrust ball bearings in liquid nitrogen through PTFE cages and dimple-type textures. Cryogenics 2023, 135, 103748. [Google Scholar] [CrossRef]
- Vidyasagar, K.E.C.; Pandey, R.K.; Kalyanasundaram, D. An exploration of frictional and vibrational behaviors of textured deep groove ball bearing in the vicinity of requisite minimum load. Friction 2021, 9, 1749–1765. [Google Scholar] [CrossRef]
- Li, Z.; Yin, S.J.; Zhang, Q.S.; Zhang, X.Q.; Zhang, H. Analysis of lubrication characteristics and friction test of texture topography of angular contact ball bearing based on computational fluid dynamics. Lubricants 2025, 13, 41. [Google Scholar] [CrossRef]
- Gimeno, S.; Mescheder, H.; Quintana, I.; Gasión, A.; Arias–Egido, E.; Carbonell, A.; Mallo, C.; Miguel, I.; Paredes, J.; Zalakain, I. Effect of different laser texturing patterns on rolling contact surface and its tribological & fatigue life behavior on 100Cr6 bearing steel. Wear 2023, 522, 204717. [Google Scholar]
- Wang, Y.Y.; Liu, T.J.; Luo, D.; Du, Z.L.; Yao, L.; Zhang, Y.M. Study on the tribological and tribo-vibration characteristics of laser textured tapered roller bearings under full oil lubrication. Ind. Lubr. Tribol. 2024, 77, 281–290. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, Y.M.; Long, R.S. Influence of pits on the tribological properties and friction-induced vibration noise of textured tapered roller bearings. Tribol. Trans. 2023, 66, 399–412. [Google Scholar] [CrossRef]
- Lu, P.; Wood, R.J.K.; Gee, M.G.; Wang, L.; Pfleging, W. The use of anisotropic texturing for control of directional friction. Tribol. Int. 2017, 113, 169–181. [Google Scholar] [CrossRef]
Group | A | B | C | D |
---|---|---|---|---|
Diameter/(μm) | Depth/(μm) | Distribution Angle/(°) | Error Column | |
01 | 200(1) | 5(1) | 0.90(1) | 1 |
02 | 200(1) | 10(2) | 1.80(2) | 2 |
03 | 200(1) | 15(3) | 1.35(3) | 3 |
04 | 150(2) | 5(1) | 1.80(2) | 3 |
05 | 150(2) | 10(2) | 1.35(3) | 1 |
06 | 150(2) | 15(3) | 0.90(1) | 2 |
07 | 100(3) | 5(1) | 1.35(3) | 2 |
08 | 100(3) | 10(2) | 0.90(1) | 3 |
09 | 100(3) | 15(3) | 1.80(2) | 1 |
Group | A | B | C | D | Average COF/(N) |
---|---|---|---|---|---|
Diameter/(μm) | Depth/(μm) | Distribution Angle/(°) | Error Column | ||
01 | 200(1) | 5(1) | 0.9(1) | 1 | 5.32 |
02 | 200(1) | 10(2) | 1.8(2) | 2 | 6.46 |
03 | 200(1) | 15(3) | 1.35(3) | 3 | 7.03 |
04 | 150(2) | 5(1) | 1.8(2) | 3 | 6.88 |
05 | 150(2) | 10(2) | 1.35(3) | 1 | 6.14 |
06 | 150(2) | 15(3) | 0.9(1) | 2 | 6.35 |
07 | 100(3) | 5(1) | 1.35(3) | 2 | 6.57 |
08 | 100(3) | 10(2) | 0.9(1) | 3 | 5.64 |
09 | 100(3) | 15(3) | 1.8(2) | 1 | 8.28 |
Ki1 | 18.81 | 18.77 | 17.31 | 19.74 | |
Ki2 | 19.37 | 18.24 | 21.62 | 19.38 | |
Ki3 | 20.49 | 21.66 | 19.74 | 19.55 | |
ki1 | 6.27 | 6.26 | 5.77 | 6.58 | |
ki2 | 6.46 | 6.08 | 7.21 | 6.46 | |
ki3 | 6.83 | 7.22 | 6.58 | 6.52 | |
R | 0.56 | 1.14 | 1.44 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, R.; Ma, Q.; Shang, Q.; Wang, H.; Yao, Y.; Wang, Y.; Zong, L. Parameter Optimization for the Improvement of Tribological Behavior of Textured Tapered Roller Bearings. Lubricants 2025, 13, 165. https://doi.org/10.3390/lubricants13040165
Long R, Ma Q, Shang Q, Wang H, Yao Y, Wang Y, Zong L. Parameter Optimization for the Improvement of Tribological Behavior of Textured Tapered Roller Bearings. Lubricants. 2025; 13(4):165. https://doi.org/10.3390/lubricants13040165
Chicago/Turabian StyleLong, Risheng, Qiang Ma, Qingyu Shang, Haiming Wang, Ying Yao, Yueyong Wang, and Lin Zong. 2025. "Parameter Optimization for the Improvement of Tribological Behavior of Textured Tapered Roller Bearings" Lubricants 13, no. 4: 165. https://doi.org/10.3390/lubricants13040165
APA StyleLong, R., Ma, Q., Shang, Q., Wang, H., Yao, Y., Wang, Y., & Zong, L. (2025). Parameter Optimization for the Improvement of Tribological Behavior of Textured Tapered Roller Bearings. Lubricants, 13(4), 165. https://doi.org/10.3390/lubricants13040165