Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases
Abstract
:1. Introduction
2. Experimental Approach
2.1. Material and Sample Preparation
2.2. Friction Test
2.3. Interfacial Resistance
3. Results and Discussion
3.1. Sample Characterization
3.2. Thermal Stability
3.3. Corrosion
3.4. Friction and Wear Performance
3.5. Evaluating Friction and Wear Properties
4. Conclusions
- The [Oley][Oleic] grease outperformed commercial perfluoropolyether (PFPE) grease and formulated lithium grease by 27.7% and 12.1% in frictional performance, respectively, with up to 16.4% better wear.
- Despite a thermal decomposition onset temperature () of 171.0 °C, [Oley][Oleic] grease is categorized as medium volatile and can withstand temperatures above 150 °C.
- The [Oley][Oleic] base oil and PTFE powder contribute to excellent anti-corrosion properties.
- The synergistic combination of oleic acid and oleylamine as the base oil enhances the grease’s polarity, resulting in lower interfacial resistance (0.165 mΩ at 1 A and 0.145 mΩ at 2 A), which is 27.5% and 22.7% better than PFPE grease, and 8.9% and 6.8% better than lithium grease, respectively.
- Correlation analysis revealed a significant relationship between the coefficient of friction and interfacial resistance, with a Spearman coefficient of , indicating that lower interfacial resistance leads to better lubrication performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Japar, S.A.; Aizudin, M.; Aziz, A.; Razali, N.; Waheeda, N.; Rahman, A. Grease and its Application on Electrical Equipment: A Review. Int. J. Eng. Technol. 2018, 7, 23–29. [Google Scholar] [CrossRef]
- Ge, X.; Xia, Y.; Feng, X. Influence of carbon nanotubes on conductive capacity and tribological characteristics of poly (ethylene glycol-ran-propylene glycol) monobutyl ether as base oil of grease. J. Tribol. 2016, 138, 011801. [Google Scholar] [CrossRef]
- Lee, W.B.; Orr, D.E. The TriboElectric Effect Series. AlphaLab, Inc. 2022. Available online: https://www.alphalabinc.com/wp-content/uploads/2024/02/The-Triboelectric-Effect-Series-AlphaLab-Inc.pdf (accessed on 30 June 2024).
- Wang, J.; Zhou, L.; Zhang, C.; Wang, Z.L. Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators. In Small-Scale Energy Harvesting; Manyala, R., Ed.; IntechOpen: London, UK, 2019; Chapter 4; pp. 63–94. [Google Scholar]
- Andrew, J.M. The future of lubricating greases in the electric vehicle era. Tribol. Lubr. Technol. 2019, 75, 38–44. [Google Scholar]
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance characteristics of lubricants in electric and hybrid vehicles: A review of current and future needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Bustami, B.; Rahman, M.M.; Shazida, M.J.; Islam, M.; Rohan, M.H.; Hossain, S.; Nur, A.S.; Younes, H. Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review. Lubricants 2023, 11, 331. [Google Scholar] [CrossRef]
- Donahue, C.J. Lubricating grease: A chemical primer. J. Chem. Educ. 2006, 83, 862. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Synergism or antagonism in tribo-performance of nano-greases using combinations of nanoparticles of graphite and PTFE. Appl. Nanosci. 2021, 11, 2525–2536. [Google Scholar] [CrossRef]
- Saxena, A.; Kumar, D.; Tandon, N. Dynamic performance of newly developed environmentally friendly greases containing polysaccharide gums in rolling bearing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 4124–4138. [Google Scholar] [CrossRef]
- Hamnas, A.; Unnikrishnan, G. Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges–Review. Renew. Sustain. Energy Rev. 2023, 182, 113413. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, W.; Shi, J.; Han, S.; Yan, J. Recent advances in polyalkylene glycol base oil. In Research on Chemical Intermediates; Springer: Berlin, Germany, 2024; pp. 1–25. [Google Scholar]
- Singh, T. Grease production survey report. In Proceedings of the 22nd Lubricating Grease Conference, NLGI India-Chapter, NLGI Missouri, Marriott Hotel, Indore, India, 1–3 February 2020. [Google Scholar]
- Hybská, H.; Mitterpach, J.; Samešová, D.; Schwarz, M.; Fialová, J.; Veverková, D. Assessment of ecotoxicological properties of oils in water. Arc. Environ. Protect. 2018, 44, 31–37. [Google Scholar]
- Cousseau, T.; Graça, B.; Campos, A.; Seabra, J. Grease aging effects on film formation under fully-flooded and starved lubrication. Lubricants 2015, 3, 197–221. [Google Scholar] [CrossRef]
- Hope, K. Polyalphaolefin Lubricant Applications. In Friction, Lubrication, and Wear Technology; Totten, G.E., Ed.; ASM International: Almere, The Netherlands, 2017; Volume 18, pp. 207–212. [Google Scholar]
- Tian, C.; Xu, H.; Dong, J. Development of environmentally friendly lubricant using natural resources: Layered double hydroxide gels. Ind. Crops Prod. 2024, 208, 117879. [Google Scholar] [CrossRef]
- Antonov, S.; Bartko, R.; Nikul’shin, P.; Kilyakova, A.Y.; Tonkonogov, B.; Danilov, A. The Current State of Development of Greases. Chem. Technol. Fuels Oils 2021, 57, 279–288. [Google Scholar] [CrossRef]
- Saxena, A.; Kumar, D.; Tandon, N. Development of lubricious environmentally friendly greases using synergistic natural resources: A potential alternative to mineral oil-based greases. J. Clean. Prod. 2022, 380, 135047. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A. The lubrication effect of different vegetable oil-based greases on steel-steel tribo-pair. Biomass Convers. Biorefinery 2024, 14, 1993–2005. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Li, F. Comparative study on mechanical properties of sealing grease composed of different base oils for shield tunnel. Materials 2020, 13, 692. [Google Scholar] [CrossRef]
- Lee, C.T.; Lee, M.B.; Chong, W.W.F.; Ng, J.H.; Wong, K.J.; Chong, C.T. Boundary Lubricity of Vegetable-Oil-Derived Trimethylolpropane (TMP) Ester. Lubricants 2022, 10, 346. [Google Scholar] [CrossRef]
- Perera, M.; Yan, J.; Xu, L.; Yang, M.; Yan, Y. Bioprocess development for biolubricant production using non-edible oils, agro-industrial byproducts and wastes. J. Clean. Prod. 2022, 357, 131956. [Google Scholar] [CrossRef]
- Kamyab, B.; Beims, R.; Chambers, D.W.; Bassi, A.S.; Xu, C. Sustainable production of high-performance bio-based hydraulic fluids from vegetable oils: Recent advances, current challenges, and future perspectives. Biomass Bioenergy 2024, 183, 107160. [Google Scholar]
- Shi, Y.; Larsson, R. Non-corrosive and biomaterials protic ionic liquids with high lubricating performance. Tribol. Lett. 2016, 63, 1–7. [Google Scholar] [CrossRef]
- Song, J. Research progress of ionic liquids as lubricants. ACS Omega 2021, 6, 29345–29349. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liquids 2020, 297, 112038. [Google Scholar] [CrossRef]
- Cai, M.; Yu, Q.; Liu, W.; Zhou, F. Ionic liquid lubricants: When chemistry meets tribology. Chem. Soc. Rev. 2020, 49, 7753–7818. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xia, Y.; Wang, L.; Pu, J.; Chen, T.; Zhang, H. Study of the conductivity and tribological performance of ionic liquid and lithium greases. Tribol. Lett. 2014, 53, 281–291. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Liu, Z.; Wen, Z. Conductive lubricating grease synthesized using the ionic liquid. Tribol. Lett. 2012, 46, 33–42. [Google Scholar] [CrossRef]
- Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly (ethylene glycol) and polyurea grease for steel/steel contacts. ACS Appl. Mater. Interfaces 2011, 3, 4580–4592. [Google Scholar] [CrossRef]
- Millar, W.; Aman, Z.M.; Atkin, R.; Li, H. Graphite infused ionic liquid greases. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130017. [Google Scholar] [CrossRef]
- Xiao, H. Ionic liquid lubricants: Basics and applications. Tribol. Trans. 2017, 60, 20–30. [Google Scholar] [CrossRef]
- Amin, A.A.E.R.; Salah, H.M.; Kandile, N.G. Fabrication and Evaluation of New Multi-Purpose Grease Using Local Raw Materials. Egypt. J. Chem. 2023, 66, 1033–1041. [Google Scholar] [CrossRef]
- Larsson, E.; Westbroek, R.; Leckner, J.; Jacobson, S.; Rudolphi, Å.K. Unraveling the lubrication mechanisms of lithium complex (LiX)-and polypropylene (PP)-thickened greases in fretting–Part I: Fretting experiments and surface analysis. Wear 2022, 490, 204192. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of lithium-ion batteries—Current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Jopen, M.; Degen, P.; Henzler, S.; Grabe, B.; Hiller, W.; Weberskirch, R. Polyurea thickened lubricating grease—The effect of degree of polymerization on rheological and tribological properties. Polymers 2022, 14, 795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, P.; Lin, J.; Gao, X. Rheological and tribological properties of lithium grease and polyurea grease with different consistencies. Coatings 2022, 12, 527. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Performance properties of lithium greases with PTFE particles as additive: Controlling parameter-size or shape? Tribol. Int. 2020, 148, 106302. [Google Scholar] [CrossRef]
- Dhanumalayan, E.; Joshi, G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I. Tribology of electric vehicles: A review of critical components, current state and future improvement trends. Tribol. Int. 2019, 138, 473–486. [Google Scholar] [CrossRef]
- Vyavhare, K.; Aswath, P.B. Tribological properties of novel multi-walled carbon nanotubes and phosphorus containing ionic liquid hybrids in grease. Front. Mech. Eng. 2019, 5, 15. [Google Scholar] [CrossRef]
- Zhang, R.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Liao, Y.; Hao, X.; An, M.; Yang, Z.; Ma, L.; Ren, H. Enhancing low-rank coal flotation using mixed collector of dodecane and oleic acid: Effect of droplet dispersion and its interaction with coal particle. Fuel 2020, 280, 118634. [Google Scholar] [CrossRef]
- Marino, F.; Lopez, E.R.; Arnosa, A.; Gómez, M.A.G.; Pineiro, Y.; Rivas, J.; Alvarez-Lorenzo, C.; Fernandez, J. ZnO nanoparticles coated with oleic acid as additives for a polyalphaolefin lubricant. J. Mol. Liquids 2022, 348, 118401. [Google Scholar] [CrossRef]
- Kiriliauskaitė, V.; Bendikienė, V.; Juodka, B. Synthesis of trimethylolpropane esters of oleic acid by Lipoprime 50T. J. Ind. Microbiol. Biotechnol. 2011, 38, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Cota, I.; Gonzalez-Olmos, R.; Iglesias, M.; Medina, F. New short aliphatic chain ionic liquids: Synthesis, physical properties, and catalytic activity in aldol condensations. J. Phys. Chem. B 2007, 111, 12468–12477. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, V.H.; Dosil, N.; Gonzalez-Cabaleiro, R.; Mattedi, S.; Martin-Pastor, M.; Iglesias, M.; Navaza, J.M. Brønsted ionic liquids for sustainable processes: Synthesis and physical properties. J. Chem. Eng. Data 2010, 55, 625–632. [Google Scholar] [CrossRef]
- Sofi, S.N.A.M.; Aziz, M.A.A.; Japar, N.S.A.; Rahman, N.W.A.; Abdulhalim, A.R.; Yunus, M.Y.M. Preparation and characterization of grease formulated from waste transformer oil. IOP Conf. Ser. Mater. Sci. Eng. 2019, 702, 012034. [Google Scholar] [CrossRef]
- Rahman, N.W.A.; Ying, S.S.Y.; Aziz, M.A.A. Grease formulation and characterization from waste automotive engine oil with the use of complex thickener. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1195, 012014. [Google Scholar] [CrossRef]
- Mohamed Ariffin, N.A.A.; Foong, S.Y.; Chong, W.W.F.; Lam, S.S.; Ng, J.H.; Zhang, H. Ionic liquid lubricity enhancement with bio-oil derived from microwave pyrolysis of bamboo. Ind. Crops Prod. 2024, 214, 118543. [Google Scholar] [CrossRef]
- Li, Y.H.; Shen, F.; Ke, L.L. Multi-physics electrical contact analysis considering the electrical resistance and Joule heating. Int. J. Solids Struct. 2022, 256, 111975. [Google Scholar] [CrossRef]
- Holm, R. Electric Contacts: Theory and Application; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Harvey, P.D. Engineering Properties of Steels; American Society for Metals: Detroit, MI, USA, 1982. [Google Scholar]
- Shah, R.; Tung, S.; Chen, R.; Miller, R. Grease performance requirements and future perspectives for electric and hybrid vehicle applications. Lubricants 2021, 9, 40. [Google Scholar] [CrossRef]
- Hairunnaja, M.A.; Aziz, M.A.A.; Abdu Rahman, N.W.; Arifin, M.A.; Isa, K.M.; Ali, U.F.M. Innovative Formulation and Characterisation of Grease Made from Waste Engine Oil. Pertanika J. Sci. Technol. 2023, 31, 2375–2387. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Vinu, R. Characterization of thermal stability of synthetic and semi-synthetic engine oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef]
- Santos, J.C.; Santos, I.M.; Souza, A.G. Thermal degradation of synthetic lubricating oils: Part III–TG and DSC studies. Pet. Sci. Technol. 2017, 35, 540–546. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Corrosion inhibitors: Natural and synthetic organic inhibitors. Lubricants 2023, 11, 174. [Google Scholar] [CrossRef]
- Su, H.; Zhao, Q.; Chen, Y.; Zhao, Q.; Jiang, C.; Lou, W. Synthesis and investigation of phosphorus-free ionic liquids as multifunctional lubricating additives. RSC Adv. 2022, 12, 25134–25142. [Google Scholar] [CrossRef]
- Kreivaitis, R.; Gumbytė, M.; Kupčinskas, A.; Kazancev, K.; Makarevičienė, V. Investigating the tribological properties of PILs derived from different ammonium cations and long chain carboxylic acid anion. Tribol. Int. 2020, 141, 105905. [Google Scholar] [CrossRef]
- Grechin, A.; Schott, V.; Kling, R. PFPE-Greases: Modern trends and perspectives. In Proceedings of the Conference ELGI AGM, London, UK, 21–24 April 2018; pp. 1–11. [Google Scholar]
- Mohamed Ariffin, N.A.A.; Lee, C.T.; Lee, M.B.; Halid, I.; Hamdan, S.H.; Ismail, M.I.; Chong, W.W.F.; Zhang, H. Enhancing boundary friction and wear reduction through adsorption control in protic ionic liquid and carbon mixtures. J. Mater. Sci. 2024, 59, 794–809. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, X.; Li, A.; Lu, Z.; Zhang, G.; Wu, Z. The Friction and Wear Properties of Metal-Doped DLC Films under Current-Carrying Condition. Tribol. Trans. 2019, 62, 1119–1128. [Google Scholar] [CrossRef]
- Bermúdez, M.D.; Jiménez, A.E.; Sanes, J.; Carrión, F.J. Ionic liquids as advanced lubricant fluids. Molecules 2009, 14, 2888–2908. [Google Scholar] [CrossRef]
- Verma, D.K.; Dewangan, Y.; Singh, A.K.; Mishra, R.; Susan, M.A.B.H.; Salim, R.; Taleb, M.; Hajjaji, F.E.; Berdimurodov, E. Ionic liquids as green and smart lubricant application: An overview. Ionics 2022, 28, 4923–4932. [Google Scholar] [CrossRef]
- Yalcin, D.; Drummond, C.J.; Greaves, T.L. Solvation properties of protic ionic liquids and molecular solvents. Phys. Chem. Chem. Phys. 2020, 22, 114–128. [Google Scholar] [CrossRef]
- Fry, B.M.; Chui, M.Y.; Moody, G.; Wong, J.S. Interactions between organic friction modifier additives. Tribol. Int. 2020, 151, 106438. [Google Scholar] [CrossRef]
- Reddy, A.B.; Shah, F.U.; Leckner, J.; Rutland, M.W.; Glavatskih, S. Ionic liquids enhance electrical conductivity of greases: An impedance spectroscopy study. Colloids Surf. A Physicochem. Eng. Asp. 2024, 683, 132875. [Google Scholar] [CrossRef]
- Nyholm, N.; Espallargas, N. Functionalized carbon nanostructures as lubricant additives—A review. Carbon 2023, 201, 1200–1228. [Google Scholar] [CrossRef]
No | Type of Test | Standards | Test Conditions |
---|---|---|---|
1 | Consistency | ISO 2137 |
|
2 | Thermogravimetric Analysis (TGA) | ASTM E1131 |
|
3 | Oil Separation (during storage) | ASTM D1742 |
|
4 | Copper Strip Corrosion | ASTM D4048 |
|
Parameters | [Oley][Oleic] | TMPO | PAO4 |
---|---|---|---|
NLGI grade | 2 | 0 | 1 |
Base oil density (g/mL) @15 °C | 0.886 | 0.915 | 0.820 |
Base oil kinematic viscosity (cSt) @40 °C | 243.6 | 41.0 | 17.0 |
Base oil kinematic viscosity (cSt) @100 °C | 20.6 | 8.6 | 3.9 |
Viscosity Index (VI) | 100 | 194 | 125 |
Oil separation | No | No | No |
Sample | Corrosiveness | |
---|---|---|
Base Oil | Grease | |
[Oley][Oleic] | 1a | 1a |
TMPO | 3a | 2c |
PAO4 | 1b | 1b |
Interfacial Resistance () | Coefficient of Friction (CoF) | Wear Scar Diameter | |
---|---|---|---|
Interfacial Resistance () | 1.000 | 0.612 | 0.018 |
Coefficient of Friction (CoF) | 0.612 | 1.000 | 0.527 |
Wear Scar Diameter | 0.018 | 0.527 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Ariffin, N.A.A.; Lee, C.T.; Thirugnanasambandam, A.; Wong, K.J.; Chong, W.W.F. Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases. Lubricants 2024, 12, 272. https://doi.org/10.3390/lubricants12080272
Mohamed Ariffin NAA, Lee CT, Thirugnanasambandam A, Wong KJ, Chong WWF. Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases. Lubricants. 2024; 12(8):272. https://doi.org/10.3390/lubricants12080272
Chicago/Turabian StyleMohamed Ariffin, Nur Aisya Affrina, Chiew Tin Lee, Arunkumar Thirugnanasambandam, King Jye Wong, and William Woei Fong Chong. 2024. "Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases" Lubricants 12, no. 8: 272. https://doi.org/10.3390/lubricants12080272
APA StyleMohamed Ariffin, N. A. A., Lee, C. T., Thirugnanasambandam, A., Wong, K. J., & Chong, W. W. F. (2024). Triboelectric Performance of Ionic Liquid, Synthetic, and Vegetable Oil-Based Polytetrafluoroethylene (PTFE) Greases. Lubricants, 12(8), 272. https://doi.org/10.3390/lubricants12080272