A Review of Chemical Modification of Vegetable Oils and Their Applications
Abstract
:1. Introduction
2. Chemical Modification
2.1. Selective Hydrogenation
2.1.1. Metal Catalysis
2.1.2. Catalyst Supports
2.2. Transesterification
2.2.1. Acid Catalysis
2.2.2. Base Catalysis
2.2.3. Enzyme Catalysis
2.3. Epoxidation
Type | Catalyst | References |
---|---|---|
Inorganic acid | Sulfuric, phosphoric, nitric, hydrochloric acid | [56] |
Organic acid | Formic, acetic, acrylic acid | [57] |
Heteropoly acid | Peroxyphosphotungstic, peroxyformic acid | [58] |
Ion exchange resin | Amberlite IR-120 cation exchange resin | [60] |
Alumina | Acros, Fluka, Sol-Gel | [62] |
Titanium silicate molecular sieve | Ti-MCM-41, TS-1 | [59] |
2.4. Estolide Formation
3. Auxiliary Methods
3.1. Modeling
3.2. Thermal Induction
3.3. Microalgae
3.4. Ultrasonic
4. Applications
4.1. Surfactant
4.2. Hydraulic Fluid
4.3. Cutting Fluid
4.4. Biodiesel
4.5. Flame Retardant Plasticizer
5. Conclusions and the Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
UCO | Used Cooking Oil |
CTH | Catalytic Transfer Hydrogenation |
TOF | Turnover Frequency |
FAME | Fatty Acid Methyl Ester |
BHO | Bio-Heavy Oil |
IFT | Interfacial Tension |
CPO | Crude Palm Oil |
HVO | Hydrogenated Vegetable Oil |
PVC | Polyvinyl Chloride |
FFAs | Free Fatty Acids |
References
- Ramamurthy, P.C.; Singh, S.; Kapoor, D.; Parihar, P.; Samuel, J.; Prasad, R.; Kumar, A.; Singh, J. Microbial biotechnological approaches: Renewable bioprocessing for the future energy systems. Microb. Cell Factories 2021, 20, 55. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, C.; Gupta, T. Application of waste cooking oil (WCO) biodiesel in a compression ignition engine. Fuel 2016, 176, 20–31. [Google Scholar] [CrossRef]
- Breiing, V.; Hillmer, J.; Schmidt, C.; Petry, M.; Behrends, B.; Steiner, U.; Kraska, T.; Pude, R. Fungicidal Efficacy of Drying Plant Oils in Green Beans against Bean Rust (Uromyces appendiculatus). Plants 2021, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.C.A.; Belchior, C.R.; Nascimento, M.V.G.; Vieira, L.D.S.R.; Fleury, G. Performance of a diesel generator fuelled with palm oil. Fuel 2002, 81, 2097–2102. [Google Scholar] [CrossRef]
- Thomas, J.J.; Manojkumar, C.V.; Sabu, V.R.; Nagarajan, G. Development and validation of a reduced chemical kinetic model for used vegetable oil biodiesel/1-Hexanol blend for engine application. Fuel 2020, 273, 117780. [Google Scholar] [CrossRef]
- No, S.-Y. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew. Sustain. Energy Rev. 2011, 15, 131–149. [Google Scholar] [CrossRef]
- Sajeeb, A.; Rajendrakumar, P.K. Comparative evaluation of lubricant properties of biodegradable blend of coconut and mustard oil. J. Clean. Prod. 2019, 240, 118255. [Google Scholar] [CrossRef]
- Jiang, X.; Long, F.; Cao, X.; Zhao, J.; Liu, P.; Xu, J. Catalytic cracking of waste cooking oil followed with hydro-isomerization for high-quality biofuel production. J. Clean. Prod. 2022, 345, 131027. [Google Scholar] [CrossRef]
- Muhbat, S.; Tufail, M.; Hashmi, S. Production of diesel-like fuel by co-pyrolysis of waste lubricating oil and waste cooking oil. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Milano, J.; Shamsuddin, A.H.; Silitonga, A.S.; Sebayang, A.H.; Siregar, M.A.; Masjuki, H.H.; Pulungan, M.A.; Chia, S.R.; Zamri, M.F.M.A. Tribological study on the biodiesel produced from waste cooking oil, waste cooking oil blend with Calophyllum inophyllum and its diesel blends on lubricant oil. Energy Rep. 2022, 8, 1578–1590. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Barbera, E.; Hirayama, K.; Maglinao, R.L.; Davis, R.W.; Kumar, S. Recent developments in synthesizing biolubricants—A review. Biomass Convers. Biorefinery 2024, 14, 2867–2887. [Google Scholar] [CrossRef]
- Naji, S.Z.; Tye, C.T.; Abd, A.A. State of the art of vegetable oil transformation into biofuels using catalytic cracking technology: Recent trends and future perspectives. Process Biochem. 2021, 109, 148–168. [Google Scholar] [CrossRef]
- Na, H.; Mok, C.; Lee, J. Effects of plasma treatment on the oxidative stability of vegetable oil containing antioxidants. Food Chem. 2020, 302, 125306. [Google Scholar] [CrossRef]
- Sonthalia, A.; Kumar, N. Hydroprocessed vegetable oil as a fuel for transportation sector: A review. J. Energy Inst. 2019, 92, 1–17. [Google Scholar] [CrossRef]
- Orege, J.I.; Oderinde, O.; Kifle, G.A.; Ibikunle, A.A.; Raheem, S.A.; Ejeromedoghene, O.; Okeke, E.S.; Olukowi, O.M.; Orege, O.B.; Fagbohun, E.O. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- Mao, Q.; He, C.; Chen, B.; Zhang, X. Enzymatic synthesis of TMP esters based on pelargonic acid from the cleavage of oleic acid: Evaluation of synthetic process, physicochemical properties and lubrication performance. Biochem. Eng. J. 2024, 204, 109238. [Google Scholar] [CrossRef]
- Streitwieser, A.; Heathcock, C.; Kosower, E. Introduction to Organic Chemistry; Macmillan: New York, NY, USA, 1992; pp. 676–677. [Google Scholar]
- Tian, S.; Wang, B.; Gong, W.; He, Z.; Xu, Q.; Chen, W.; Zhang, Q.; Zhu, Y.; Yang, J.; Fu, Q.; et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Jayakumar, S.; Luo, M.; Kong, X.; Li, C.; Li, H.; Chen, J.; Yang, Q. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nat. Commun. 2022, 13, 1770. [Google Scholar] [CrossRef]
- Gousi, M.; Kordouli, E.; Bourikas, K.; Simianakis, E.; Ladas, S.; Panagiotou, G.D.; Kordulis, C.; Lycourghiotis, A. Green diesel production over nickel-alumina nanostructured catalysts promoted by zinc. Catal. Today 2020, 355, 903–909. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Chen, Y.; Nie, S.; Xie, M. Characteristics and catalytic behavior of different platinum supported catalysts in the selective hydrogenation of soybean oil. React. Kinet. Mech. Catal. 2017, 122, 915–930. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lee, J.; Seo, H.; Kang, H.; Kim, D.H.; Lee, Y.-W. Evaluation of Pd/ZSM-5 catalyst for simultaneous reaction of transesterification and partial catalytic transfer hydrogenation of soybean oil under supercritical methanol. Fuel Process. Technol. 2021, 218, 106870. [Google Scholar] [CrossRef]
- Numwong, N.; Prabnasak, P.; Prayoonpunratn, P.; Triphatthanaphong, P.; Thunyaratchatanon, C.; Mochizuki, T.; Chen, S.-Y.; Luengnaruemitchai, A.; Sooknoi, T. Effect of Pd particle size on activity and cis-trans selectivity in partial hydrogenation of soybean oil-derived FAMEs over Pd/SiO2 catalysts. Fuel Process. Technol. 2020, 203, 106393. [Google Scholar] [CrossRef]
- Cepeda, E.A.; Iriarte-Velasco, U.; Calvo, B.; Sierra, I. Hydrogenation of Sunflower Oil over M/SiO2 and M/Al2O3 (M = Ni, Pd, Pt, Co, Cu) Catalysts. J. Am. Oil Chem. Soc. 2016, 93, 731–741. [Google Scholar] [CrossRef]
- Papageridis, K.N.; Charisiou, N.D.; Douvartzides, S.L.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; AlKhoori, S.; Polychronopoulou, K.; Goula, M.A. Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2 and SiO2 catalysts. Fuel Process. Technol. 2020, 209, 106547. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chollacoop, N.; Yoshimura, Y. Catalytic upgrading of soybean oil methyl esters by partial hydrogenation using Pd catalysts. Fuel 2016, 163, 8–16. [Google Scholar] [CrossRef]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Toshtay, K.; Auyezov, A.; Korkembay, Z.; Toktassynov, S.; Seytkhan, A.; Nurakyshev, A. Partial hydrogenation of sunflower oil on platinum catalysts: Influence of process conditions on the mass content of geometric isomers. Mol. Catal. 2021, 513, 111819. [Google Scholar] [CrossRef]
- Aiamsiri, P.; Tumnantong, D.; Yoosuk, B.; Ngamcharussrivichai, C.; Prasassarakich, P. Biohydrogenated Diesel from Palm Oil Deoxygenation over Unsupported and γ-Al2O3 Supported Ni–Mo Catalysts. Energy Fuels 2021, 35, 14793–14804. [Google Scholar] [CrossRef]
- Du, Y.; Behera, R.K.; Maligal-Ganesh, R.V.; Chen, M.; Zhao, T.Y.; Huang, W.; Bowers, C.R. Mesoporous Silica Encapsulated Platinum–Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. J. Phys. Chem. Lett. 2022, 13, 4125–4132. [Google Scholar] [CrossRef]
- Na Rungsi, A.; Luengnaruemitchai, A.; Wongkasemjit, S.; Chollacoop, N.; Chen, S.-Y.; Yoshimura, Y. Influence of silica sources on structural property and activity of Pd-supported on mesoporous MCM-41 synthesized with an aid of microwave heating for partial hydrogenation of soybean methyl esters. Appl. Catal. A Gen. 2018, 563, 80–90. [Google Scholar] [CrossRef]
- Baldauf, E.; Sievers, A.; Willner, T. Heterogeneous catalysts for the production of hydrotreated cracked vegetable oil. Biofuels 2017, 8, 555–564. [Google Scholar] [CrossRef]
- Wong, F.H.; Tiong, T.J.; Leong, L.K.; Lin, K.-S.; Yap, Y.H. Effects of ZnO on Characteristics and Selectivity of Coprecipitated Ni/ZnO/Al2O3 Catalysts for Partial Hydrogenation of Sunflower Oil. Ind. Eng. Chem. Res. 2018, 57, 3163–3174. [Google Scholar] [CrossRef]
- Laosiripojana, W.; Kiatkittipong, W.; Sakdaronnarong, C.; Assabumrungrat, S.; Laosiripojana, N. Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials. Renew. Energy 2019, 135, 1048–1055. [Google Scholar] [CrossRef]
- Deboni, T.M.; Hirata, G.A.M.; Shimamoto, G.G.; Tubino, M.; Meirelles, A.J.d.A. Deacidification and ethyl biodiesel production from acid soybean oil using a strong anion exchange resin. Chem. Eng. J. 2018, 333, 686–696. [Google Scholar] [CrossRef]
- Xin, H.; Ke, T. Preparation and adsorption denitrogenation from model fuel or diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2560–2567. [Google Scholar] [CrossRef]
- Jeon, Y.; Chi, W.S.; Hwang, J.; Kim, D.H.; Kim, J.H.; Shul, Y.-G. Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: Bifunctional heterogeneous catalyst for efficient biodiesel production. Appl. Catal. B Environ. 2019, 242, 51–59. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Taherinia, Z.; Tyula, Y.A. Efficient biodiesel production from oleic and palmitic acid using a novel molybdenum metal–organic framework as efficient and reusable catalyst. Sci. Rep. 2022, 12, 10338. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cai, L.; Zhang, L.; Fu, W.; Hong, Y.; Gao, X.; Jiang, Y.; Li, L.; Yan, X.; Wu, G. Transesterification of rice bran oil to biodiesel using mesoporous NaBeta zeolite-supported molybdenum catalyst: Experimental and kinetic studies. Chem. Eng. J. 2020, 382, 122839. [Google Scholar] [CrossRef]
- Xu, W.; Ollevier, T.; Kleitz, F. Iron-Modified Mesoporous Silica as an Efficient Solid Lewis Acid Catalyst for the Mukaiyama Aldol Reaction. ACS Catal. 2018, 8, 1932–1944. [Google Scholar] [CrossRef]
- Shagufta; Ahmad, I.; Dhar, R. Sulfonic Acid-Functionalized Solid Acid Catalyst in Esterification and Transesterification Reactions. Catal. Surv. Asia 2017, 21, 53–69. [Google Scholar] [CrossRef]
- Đặng, T.-H.; Nguyễn, X.-H.; Chou, C.-L.; Chen, B.-H. Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production. Renew. Energy 2021, 174, 347–358. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Mandal, A. Characterizations of surfactant synthesized from Jatropha oil and its application in enhanced oil recovery. AIChE J. 2017, 63, 2731–2741. [Google Scholar] [CrossRef]
- Jambhulkar, D.K.; Ugwekar, R.P.; Bhanvase, B.A.; Barai, D.P. A review on solid base heterogeneous catalysts: Preparation, characterization and applications. Chem. Eng. Commun. 2022, 209, 433–484. [Google Scholar] [CrossRef]
- Marwaha, A.; Dhir, A.; Mahla, S.K.; Mohapatra, S.K. An overview of solid base heterogeneous catalysts for biodiesel production. Catal. Rev. 2018, 60, 594–628. [Google Scholar] [CrossRef]
- Mohamad, M.; Ngadi, N.; Wong, S.L.; Jusoh, M.; Yahya, N.Y. Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel 2017, 190, 104–112. [Google Scholar] [CrossRef]
- Huang, J.; Zou, Y.; Yaseen, M.; Qu, H.; He, R.; Tong, Z. Fabrication of hollow cage-like CaO catalyst for the enhanced biodiesel production via transesterification of soybean oil and methanol. Fuel 2021, 290, 119799. [Google Scholar] [CrossRef]
- Yadav, M.; Sharma, Y.C. Transesterification of used vegetable oil using BaAl2O4 spinel as heterogeneous base catalyst. Energy Convers. Manag. 2019, 198, 111795. [Google Scholar] [CrossRef]
- Lukić, I.; Krstić, J.; Jovanović, D.; Skala, D. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresour. Technol. 2009, 100, 4690–4696. [Google Scholar] [CrossRef]
- Mahdavi, V.; Monajemi, A. Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts. J. Taiwan Inst. Chem. Eng. 2014, 45, 2286–2292. [Google Scholar] [CrossRef]
- Al-Saadi, A.; Mathan, B.; He, Y. Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chem. Eng. Res. Des. 2020, 162, 238–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, S.; Han, K.; Li, Y.; Lu, C. Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renew. Energy 2021, 168, 981–990. [Google Scholar] [CrossRef]
- Duarte, S.H.; del Peso Hernández, G.L.; Canet, A.; Benaiges, M.D.; Maugeri, F.; Valero, F. Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Bioresour. Technol. 2015, 183, 175–180. [Google Scholar] [CrossRef]
- Yu, C.Y.; Huang, L.Y.; Kuan, I.C.; Lee, S.L. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles. Int. J. Mol. Sci. 2013, 14, 24074–24086. [Google Scholar] [CrossRef] [PubMed]
- Klaas, M.R.; Warwel, S. Chemoenzymatic epoxidation of alkenes by dimethyl carbonate and hydrogen peroxide. Org. Lett. 1999, 1, 1025–1026. [Google Scholar] [CrossRef]
- Bashiri, S.; Ghobadian, B.; Dehghani Soufi, M.; Gorjian, S. Chemical modification of sunflower waste cooking oil for biolubricant production through epoxidation reaction. Mater. Sci. Energy Technol. 2021, 4, 119–127. [Google Scholar] [CrossRef]
- Afifah, A.N.; Syahrullail, S.; Wan Azlee, N.I.; Rohah, A.M. Synthesis and tribological studies of epoxidized palm stearin methyl ester as a green lubricant. J. Clean. Prod. 2021, 280, 124320. [Google Scholar] [CrossRef]
- Cai, L.; Chen, C.; Wang, W.; Gao, X.; Kuang, X.; Jiang, Y.; Li, L.; Wu, G. Acid-free epoxidation of soybean oil with hydrogen peroxide to epoxidized soybean oil over titanium silicalite-1 zeolite supported cadmium catalysts. J. Ind. Eng. Chem. 2020, 91, 191–200. [Google Scholar] [CrossRef]
- Somidi, A.K.R.; Das, U.; Dalai, A.K. One-pot synthesis of canola oil based biolubricants catalyzed by MoO3/Al2O3 and process optimization study. Chem. Eng. J. 2016, 293, 259–272. [Google Scholar] [CrossRef]
- Sahu, H.; Mohanty, K. One pot peroxidation of oleic acid rich Azadirachta indica oil over bio-waste derived heterogeneous catalyst. Can. J. Chem. Eng. 2017, 95, 1526–1536. [Google Scholar] [CrossRef]
- Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. J. Clean. Prod. 2019, 236, 117615. [Google Scholar] [CrossRef]
- Moser, B.R.; Germak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem. Soc. 2022, 99, 801–842. [Google Scholar] [CrossRef]
- Filho, P.; Nascimento, M.; Silva, S.; Luna, F.; Castellón, E.; Cavalcante, C. Synthesis and Frictional Characteristics of Bio-Based Lubricants Obtained from Fatty Acids of Castor Oil. Lubricants 2023, 11, 57. [Google Scholar] [CrossRef]
- Marques, J.; Rios, Í.; Parente, E.; Quintella, S.; Luna, F.; Cavalcante, C. Synthesis and Characterization of Potential Bio-Based Lubricant Basestocks via Epoxidation Process. J. Am. Oil Chem. Soc. 2020, 97, 437–446. [Google Scholar] [CrossRef]
- Thampi, A.; John, A.; Arif, M.; Rani, S. Evaluation of the tribological properties and oxidative stability of epoxidized and ring opened products of pure rice bran oil. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1093–1100. [Google Scholar] [CrossRef]
- Abdel-Hameed, H.; El-Saeed, S.; Ahmed, N.; Nassar, M.; El-Kafrawy, A.; Hashem, A. Chemical transformation of Jojoba oil and Soybean oil and study of their uses as bio-lubricants. Ind. Crops Prod. 2022, 187, 115256. [Google Scholar] [CrossRef]
- Sanap, P.; Sonawane, D.; Patil, S.; Pratap, A. Optimization of oleic-estolide fatty acid synthesis using response surface methodology and artificial neural networks. Ind. Crops Prod. 2022, 188, 115711. [Google Scholar] [CrossRef]
- Rajasozhaperumal, G.; Kannan, C. Comparative evaluation of chemically modified Jatropha oils as sustainable biolubricants in boundary lubrication regime. Tribol. Int. 2023, 186, 108594. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Quadir, M.; Thaher, M.; Annamalai, S.; Mahata, C.; Hawari, A.; Jabri, H. A comparative physicochemical property assessment and techno-economic analysis of biolubricants produced using chemical modification and additive-based routes. Sci. Total Environ. 2022, 847, 157648. [Google Scholar] [CrossRef]
- Jalil, M.J.; Hadi, A.; Azmi, I.S. Catalytic epoxidation of palm oleic acid using in situ generated performic acid—Optimization and kinetic studies. Mater. Chem. Phys. 2021, 270, 124754. [Google Scholar] [CrossRef]
- Jalil, M.J. Optimization of Palm Oleic Acid Epoxidation via in Situ Generated Performic Acid Using Taguchi Orthogonal Array Design and the Study of Reaction Kinetics. Smart Sci. 2019, 7, 252–259. [Google Scholar] [CrossRef]
- Jung, S.; Kim, H.; Tsang, Y.F.; Lin, K.-Y.A.; Park, Y.-K.; Kwon, E.E. A new biorefinery platform for producing (C2-5) bioalcohols through the biological/chemical hybridization process. Bioresour. Technol. 2020, 311, 123568. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kim, M.; Lin, K.-Y.A.; Park, Y.-K.; Kwon, E.E. Biodiesel synthesis from bio-heavy oil through thermally induced transesterification. J. Clean. Prod. 2021, 294, 126347. [Google Scholar] [CrossRef]
- Sun, B.; Tian, P.; Ren, F.; Yan, J.; Wang, C.; Lin, H.; Xue, Y.; Han, S. Synthesis and evaluation of alkyl methacrylate-norbornene anhydride copolymers with various pendants as pour point depressants for soybean biodiesel-diesel blends. Fuel 2022, 317, 123542. [Google Scholar] [CrossRef]
- Qu, S.; Chen, C.; Guo, M.; Jiang, W.; Lu, J.; Yi, W.; Ding, J. Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. J. Clean. Prod. 2021, 311, 127490. [Google Scholar] [CrossRef]
- Sancheti, S.V.; Gogate, P.R. Ultrasound assisted selective catalytic transfer hydrogenation of soybean oil using 5% Pd/C as catalyst under ambient conditions in water. Ultrason. Sonochemistry 2017, 38, 161–167. [Google Scholar] [CrossRef]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 886–907. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Mohammadi, A.H.; Manshad, A.K. Chemical Enhanced Oil Recovery by Different Scenarios of Slug Injection into Carbonate/Sandstone Composite Oil Reservoirs Using an Anionic Surfactant Derived from Rapeseed Oil. Energy Fuels 2021, 35, 1248–1258. [Google Scholar] [CrossRef]
- Saxena, N.; Pal, N.; Dey, S.; Mandal, A. Characterizations of surfactant synthesized from palm oil and its application in enhanced oil recovery. J. Taiwan Inst. Chem. Eng. 2017, 81, 343–355. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Pochi, D.; Bondioli, P.; Grilli, R.; Fornaciari, L.; Folegatti, L.; Malaguti, L.; Matteo, R.; Ugolini, L.; Lazzeri, L. Semi-refined Crambe abyssinica (Hochst. EX R.E.Fr.) oil as a biobased hydraulic fluid for agricultural applications. Biomass Convers. Biorefinery 2023, 13, 1859–1871. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar, J.M.; González Cortés, Á. High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Ind. Crops Prod. 2021, 170, 113701. [Google Scholar] [CrossRef]
- Olszak, A.; Osowski, K.; Musiałek, I.; Rogoś, E.; Kęsy, A.; Kęsy, Z. Application of Plant Oils as Ecologically Friendly Hydraulic Fluids. Appl. Sci. 2020, 10, 9086. [Google Scholar] [CrossRef]
- Debnath, S.; Reddy, M.M.; Yi, Q.S. Environmental friendly cutting fluids and cooling techniques in machining: A review. J. Clean. Prod. 2014, 83, 33–47. [Google Scholar] [CrossRef]
- Edla, S.; Thampi, A.D.; Pillai, A.B.K.; Sivan, V.V.; Arif, M.M.; Sasidharan, B.; Sasidharan, R. Formulation of rice bran oil-based green cutting fluid with holy basil oil and clove oil as bio-additives. Biomass Convers. Biorefinery 2022, 13, 16877–16886. [Google Scholar] [CrossRef]
- Mitrova, T. Review of the “Global and Russian energy outlook up to 2040”. Energy Strategy Rev. 2014, 2, 323–325. [Google Scholar] [CrossRef]
- Yadav, A.K.; Khan, M.E.; Dubey, A.M.; Pal, A. Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel. Case Stud. Therm. Eng. 2016, 8, 236–244. [Google Scholar] [CrossRef]
- Öğüt, H.; Oğuz, H.; Aydın, F.; Ciniviz, M.; Deveci, H. The effects of the use of vegetable oil based as engine lubrication oil on engine performance and emissions in diesel engines. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2381–2396. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Song, J.H. Comparative Evaluation on Combustion and Emission Characteristics of a Diesel Engine Fueled with Crude Palm Oil Blends. Appl. Sci. 2021, 11, 11502. [Google Scholar] [CrossRef]
- Napolitano, P.; Guido, C.; Beatrice, C.; Pellegrini, L. Impact of hydrocracked diesel fuel and Hydrotreated Vegetable Oil blends on the fuel consumption of automotive diesel engines. Fuel 2018, 222, 718–732. [Google Scholar] [CrossRef]
- Dobrzyńska, E.; Szewczyńska, M.; Pośniak, M.; Szczotka, A.; Puchałka, B.; Woodburn, J. Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environ. Pollut. 2020, 259, 113772. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Hu, L.; Liu, C.; Feng, G.; Yang, X.; Bo, C.; Zhou, Y. Development of a vegetable oil based plasticizer for preparing flame retardant poly(vinyl chloride) materials. RSC Adv. 2015, 5, 76392–76400. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Hu, L.; Zhou, Y. Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material. Korean J. Chem. Eng. 2016, 33, 1080–1087. [Google Scholar] [CrossRef]
- Chang, B.P.; Thakur, S.; Mohanty, A.K.; Misra, M. Novel sustainable biobased flame retardant from functionalized vegetable oil for enhanced flame retardancy of engineering plastic. Sci. Rep. 2019, 9, 15971. [Google Scholar] [CrossRef] [PubMed]
- Alcock, T.; Salt, D.; Wilson, P.; Ramsden, S. More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Sci. Total Environ. 2022, 829, 154539. [Google Scholar] [CrossRef]
- You, Y.; Shie, J.; Chang, C.; Huang, S.; Pai, C.; Yu, Y.; Chang, C. Economic cost analysis of biodiesel production: Case in soybean oil. Energy Fuels 2008, 22, 182–189. [Google Scholar] [CrossRef]
Classification | Vegetable Oils | Mineral Oils | |
---|---|---|---|
Characteristic | |||
Advantages | High biodegradability | Sufficient materials | |
Excellent lubricity | Easy extraction | ||
Long service life | Low price | ||
Disadvantages | Poor oxidation stability | Non-renewable | |
Easily corroded | Easily contaminated |
State | Types of Catalyst | Concentrations of Catalyst (wt%) | Methanol to Oil Molar Ratio | Temperature (°C) | Time (h) | Types of Vegetable Oil | Yield (%) | Yield after Five Cycles (%) | References |
---|---|---|---|---|---|---|---|---|---|
Liquid | NaOH | 14.2 | / | 70 | 6 | Palm | 98.4 | / | [43] |
KOH | 1 | 6:1 | 64.7 | 0.75 | Flaxseed | 94 | / | [44] | |
Solid | Diatomite | 10.04 | / | 63 | 6 | Soybean | 98 | / | [43] |
CaO | 3 | 15:1 | 65 | 2 | Soybean | 97.8 | 90.3 | [48] | |
BaAl2O4 | 4 | 21:1 | 65 | 2.5 | Used vegetable oil | 93.28 | >80 | [49] | |
TiO2-CaO | 2.52 | 15:1 | 65 | 2.5 | Palm | 96.67 | >80 | [49] | |
Al2O3-SiO2 | 2 | 15:1 | 120 | 12 | Sunflower | 93.5 | / | [45] | |
CaO-MgO | 14.4 | 12.4:1 | 95.63 | 8.5 | Cottonseed | 97.62 | / | [51] | |
SrO-ZnO | 15 | 10:1 | 75 | 5 | Corn | 95.7 | / | [52] | |
SrO-CaO | 7.5 | 18:1 | 65 | 3 | Palm | 98.16 | 92.61 | [53] |
Types of Vegetable Oils | Advantageous Applications |
---|---|
Rapeseed oil | Recycling and Biodegradation |
Almond oil | Natural corrosion inhibitors |
Castor oil | Turning hardened stainless steels |
Karanja oil | Extending the life of tools |
Sunflower and palm oil | Assisting the machining operations |
Soybean oil | Improving surface finish |
Coconut oil | Reducing the flank wear |
Modification Methods | Low Temperature Performance | Oxidation Stability | Biodegradability |
---|---|---|---|
Selective hydrogenation | Moderate | Good | Poor |
Transesterification | Moderate | Poor | Good |
Estolide formation | Moderate | Poor | Good |
Epoxidation | Moderate | Moderate | Good |
Epoxidation + other methods | Good | Good | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Shang, Z.; Zheng, Z.; Shi, N.; Yang, B.; Han, S.; Yan, J. A Review of Chemical Modification of Vegetable Oils and Their Applications. Lubricants 2024, 12, 180. https://doi.org/10.3390/lubricants12050180
Zeng Y, Shang Z, Zheng Z, Shi N, Yang B, Han S, Yan J. A Review of Chemical Modification of Vegetable Oils and Their Applications. Lubricants. 2024; 12(5):180. https://doi.org/10.3390/lubricants12050180
Chicago/Turabian StyleZeng, Yongjing, Zichen Shang, Zeni Zheng, Ning Shi, Bo Yang, Sheng Han, and Jincan Yan. 2024. "A Review of Chemical Modification of Vegetable Oils and Their Applications" Lubricants 12, no. 5: 180. https://doi.org/10.3390/lubricants12050180
APA StyleZeng, Y., Shang, Z., Zheng, Z., Shi, N., Yang, B., Han, S., & Yan, J. (2024). A Review of Chemical Modification of Vegetable Oils and Their Applications. Lubricants, 12(5), 180. https://doi.org/10.3390/lubricants12050180