Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of Composite, Chemical Composition, and Microstructure
2.2. Wear Test
2.3. Design of Experiments and Experimental Results
2.4. Analysis of S/N Ratios and ANOVA
2.5. Multi-Response Optimization
2.6. Results and Discussion of the GRA Analysis
3. TOPSIS Method
3.1. Defining Parameter Variations and Criteria
3.2. The Course of Implementation of the TOPSIS Method
- (a)
- The benefit type
- (b)
- The cost type
3.3. Analysis and Discussion of the Results Using the TOPSIS Method
4. Morphology of Worn Surfaces
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Ezatpour, H.R.; Torabi Parizi, M.; Sajjadi, S.; Ebrahimi, G. Optimum selection of A356/Al2O3 nano/microcomposites fabricated with different conditions based on mathematical method. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 231, 373–381. [Google Scholar] [CrossRef]
- Stojanovic, B.; Glisovic, J. Application of Ceramic Matrix Composite in Automotive Industry. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 275–292. [Google Scholar]
- Gajević, S.; Miladinović, S.; Stojanović, B. Chapter 8—Metallic nanocomposites: An Introduction. In Nanotechnology in the Automotive Industry; Elsevier: Oxford, UK; Cambridge, MA, USA, 2022; pp. 155–161. [Google Scholar]
- Vencl, A.; Šljivić, V.; Pokusová, M.; Kandeva, M.; Sun, H.; Zadorozhnaya, E.; Bobić, I. Production, microstructure and tribological properties of Zn-Al/Ti metal-metal composites reinforced with alumina nanoparticles. Int. J. Met. 2021, 15, 1402–1411. [Google Scholar] [CrossRef]
- Kumar, T.S.; Shalini, S.; Priyadharshini, G.S.; Raghu, R. Parametric Optimization of Dry Sliding Wear Behavior of A356 Alloy-Zircon Composites. Tribol. Ind. 2022, 44, 719–730. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Angadi, S.; Malik, V.; Saxena, K.K.; Prakash, C.; Dixit, S.; Mohammed, K.A. Mechanical and tribological properties of aluminum-based metal-matrix composites. Materials 2022, 15, 6111. [Google Scholar] [CrossRef] [PubMed]
- Maurya, M.; Kumar, S.; Bajpai, V. Assessment of the mechanical properties of aluminium metal matrix composite: A review. J. Reinf. Plast. Compos. 2019, 38, 267–298. [Google Scholar] [CrossRef]
- Akbari, M.; Asadi, P.; Asiabaraki, H.R. Investigation of wear and microstructural properties of A356/TiC composites fabricated by FSP. Surf. Rev. Lett. 2022, 29, 2250130. [Google Scholar] [CrossRef]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I. Grey relational analysis for optimization of wear parameters and surface roughness on nano composite coating. J. Indian Chem. Soc. 2021, 98, 100171. [Google Scholar] [CrossRef]
- Muthu, P. Multi objective optimization of wear behaviour of Aluminum MMCs using Grey-Taguchi method. Manuf. Rev. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Alagarsamy, S.V.; Ravichandran, M.; Meignanamoorthy, M. Multi-objective optimisation of dry sliding wear control parameters for stir casted AA7075-TiO2 composites using Taguchi-Grey relational approach. Aust. J. Mech. Eng. 2022, 20, 1453–1462. [Google Scholar]
- Mahandiran Balu, S.; Vigneshkumar, M.; Ashoka Varthanan, P.; Vijay Prakash, G.; Sekar, P. Multi-objective optimization of process parameters in dry sliding wear characteristics of Al/SiC composites using Taguchi grey relation analysis. Mater. Today Proc. 2021, 45, 1882–1886. [Google Scholar]
- Kumar, M. Mechanical and sliding wear performance of AA356-Al2O3/SiC/graphite alloy composite materials: Parametric and ranking optimization using Taguchi DOE and hybrid AHP-GRA method. Silicon 2021, 13, 2461–2477. [Google Scholar] [CrossRef]
- Konada, N.K.; Oktem, H.; Oz, A. Tribological and Mechanical Behavior of Brake Composite with ANN and TOPSIS. J. Mater. Eng. Perform. 2024, 1–18. [Google Scholar] [CrossRef]
- Rathod, N.J.; Chopra, M.K.; Chaurasiya, P.K.; Vidhate, U.S.; Dasore, A. Optimization on the turning process parameters of SS 304 using Taguchi and TOPSIS. Ann. Data Sci. 2022, 10, 1405–1419. [Google Scholar] [CrossRef]
- Bhaskar, S.; Kumar, M.; Patnaik, A. Application of hybrid AHP-TOPSIS technique in analyzing material performance of silicon carbide ceramic particulate reinforced AA2024 alloy composite. Silicon 2020, 12, 1075–1084. [Google Scholar] [CrossRef]
- Prathap Singh, S.; Prabhuram, T.; Elilraja, D.; Immanuel Durairaj, J. Influence of Drilling Operation Variables on Surface Roughness and Thrust Force of Aluminium Reinforced with 10% Al2O3 Functionally Graded Metal Matrix Composite. In Recent Advances in Manufacturing, Automation, Design and Energy Technologies: Proceedings from ICoFT 2020; Springer: Singapore, 2022; pp. 65–73. [Google Scholar]
- Tamiloli, N.; Venkatesan, J.; Murali, G.; Kodali, S.P.; Sampath Kumar, T.; Arunkumar, M.P. Optimization of end milling on Al–SiC-fly ash metal matrix composite using Topsis and fuzzy logic. SN Appl. Sci. 2019, 1, 1204. [Google Scholar] [CrossRef]
- Jamwal, A.; Agrawal, R.; Gupta, P. Application of multi-criteria decision-making techniques in the optimization of mechano-tribological properties of copper-SiC-Graphite hybrid metal Matrix composites. In Intelligent Manufacturing. Materials Forming, Machining and Tribology; Springer: Cham, Switzerland, 2021; pp. 149–172. [Google Scholar]
- Kannan, P.R.; Thanigaivelan, R.; Thiraviam, R.; Kumar, K.P. Performance studies on hybrid nano-metal matrix composites for wear and surface quality. Mater. Sci.-Pol. 2023, 41, 288–300. [Google Scholar] [CrossRef]
- Mastan Rao, P.; Deva Raj, C.; Dhoria, S.H.; Vijaya, M.; Chowdary, J.R.R. Multi-Objective Optimization of Turning for Nickel-Based Alloys Using Taguchi-GRA and TOPSIS Approaches. J. Inst. Eng. (India) Ser. D 2023. [Google Scholar] [CrossRef]
- John, M.M.; Hanief, M. Effect of lubrication on frictional noise and coefficient of friction in sliding tribo-pair using Taguchi’s integrated TOPSIS method. Biomass Convers. Biorefinery 2022, 1–14. [Google Scholar] [CrossRef]
- Alagarsamy, S.V.; Raveendran, P.; Ravichandran, M. Investigation of material removal rate and tool wear rate in spark erosion machining of Al-Fe-Si alloy composite using Taguchi coupled TOPSIS approach. Silicon 2021, 13, 2529–2543. [Google Scholar] [CrossRef]
- Akbari, M.; Shojaeefard, M.H.; Asadi, P.; Khalkhali, A. Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II. Trans. Nonferrous Met. Soc. China 2017, 27, 2317–2333. [Google Scholar] [CrossRef]
- Akbari, M.; Rahimi Asiabaraki, H. Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II. Weld. Int. 2023, 37, 21–33. [Google Scholar] [CrossRef]
- Bobić, I.; Vencl, A.; Babić, M.; Mitrović, S.; Bobić, B. The Technological Process of Obtaining a Hybrid Composition Based on A356 Aluminum Alloy with the Addition of 10% SiC Particles and 1% Mass Fraction of Graphite Particles, Technical Solution; Faculty of Mechanical Engineering, University of Belgrade: Belgrade, Serbia, 2011. [Google Scholar]
- Stojanovic, B.; Babic, M.; Ivanović, L. Taguchi optimization of tribological properties of Al/SiC/Graphite composite. J. Balk. Tribol. Assoc. 2016, 22, 2592–2605. [Google Scholar]
- Stojanovic, B.; Babic, M.; Miloradović, N.; Mitrovic, S. Tribological behaviour of A356/10SiC/3Gr hybrid composite in dry-sliding conditions. Mater. Technol. 2015, 49, 117–121. [Google Scholar]
- ISO 11158:2023; Lubricants, Industrial Oils and Related Products (Class L)—Family H (Hydraulic Systems)—Specifications for Categories HH, HL, HM, HV and HG. ISO: Geneva, Switzerland, 2023.
- Veličković, S.; Stojanović, B.; Babić, M.; Bobić, I. Optimization of tribological properties of aluminum hybrid composites using Taguchi design. J. Compos. Mater. 2017, 51, 2505–2515. [Google Scholar] [CrossRef]
- Veličković, S.; Stojanović, B.; Babić, M.; Vencl, A.; Bobić, I.; VadaszneBognar, G.; Vučetić, F. Parametric optimization of the aluminium nanocomposites wear rate. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 19. [Google Scholar] [CrossRef]
- Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Joel, C.; Jeyapoovan, T. Optimization of machinability parameters in abrasive water jet machining of AA7075 using Grey-Taguchi method. Mater. Today Proc. 2021, 37, 737–741. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Khan, S.; Sarmah, P. Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis. J. King Saud Univ.-Eng. Sci. 2020, 32, 274–286. [Google Scholar] [CrossRef]
- Khan, M.M.; Nisar, M.; Hajam, M.I. High-Stress Abrasive Wear Analysis of in Situ TiC-Reinforced Zinc–Aluminum Composites Using Integrated Taguchi–TOPSIS Method. Adv. Eng. Mater. 2023, 25, 2201862. [Google Scholar] [CrossRef]
- Asadi, P.; Aliha, M.R.M.; Akbari, M.; Imani, D.M.; Berto, F. Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Eng. Fail. Anal. 2022, 140, 106528. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lu, C.C. Assessing the competitiveness of insurance corporations using fuzzy correlation analysis and improved fuzzy modified TOPSIS. Expert Syst. 2015, 32, 392–404. [Google Scholar] [CrossRef]
- Hussain, S.A.; Poppathi, N.; Alamgir, M. Multi-Objective Optimization of Dry Sliding Wear Parameters of Aluminium Matrix Composites (AA7068/TiC) using Grey Relational Analysis. Int. J. Innov. Technol. Explor. Eng. 2022, 11, 12–18. [Google Scholar] [CrossRef]
- Meel, R.; Singh, V.; Katyal, P.; Gupta, M. Optimization of process parameters of micro-EDD/EDM for magnesium alloy using Taguchi based GRA and TOPSIS method. Mater. Today Proc. 2022, 51, 269–275. [Google Scholar] [CrossRef]
- Achuthamenon Sylajakumari, P.; Ramakrishnasamy, R.; Palaniappan, G. Taguchi grey relational analysis for multi-response optimization of wear in co-continuous composite. Materials 2018, 11, 1743. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, B.; Vencl, A.; Bobić, I.; Miladinović, S.; Skerlić, J. Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 311. [Google Scholar] [CrossRef]
- Babić, M.; Stojanović, B.; Mitrović, S.; Bobić, I.; Miloradović, N.; Pantić, M.; Džunić, D. Wear Properties of A356/10SiC/1Gr Hybrid Composites in Lubricated Sliding Conditions. Tribol. Ind. 2013, 35, 148–154. [Google Scholar]
Chemical Composition | Si | Cu | Mg | Mn | Fe | Zn | Ni | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Percentage share (wt.%) | 7.20 | 0.02 | 0.25 | 0.01 | 0.18 | 0.01 | 0.02 | 0.11 | Rest |
Name of Parameters | Unit | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
A: Normal load | N | 40 | 80 | 120 |
B: Siding speed | m/s | 0.25 | 0.5 | 1 |
C: Gr addition | wt.% | 1 | 3 | 5 |
No. | A | B | C | WR, ×10−3 mm3/m | CoF | S/N Ratios for WR, dB | S/N Ratios for CoF, dB |
---|---|---|---|---|---|---|---|
1. | 40 | 0.25 | 1 | 0.325 | 0.104 | 9.7623 | 19.6593 |
2. | 40 | 0.25 | 3 | 0.174 | 0.082 | 15.1890 | 21.7237 |
3. | 40 | 0.25 | 5 | 0.204 | 0.097 | 13.8074 | 20.2646 |
4. | 40 | 0.50 | 1 | 0.252 | 0.098 | 11.9720 | 20.1755 |
5. | 40 | 0.50 | 3 | 0.141 | 0.063 | 17.0156 | 24.0132 |
6. | 40 | 0.50 | 5 | 0.168 | 0.071 | 15.4938 | 22.9748 |
7. | 40 | 1.00 | 1 | 0.201 | 0.086 | 13.9361 | 21.3100 |
8. | 40 | 1.00 | 3 | 0.120 | 0.052 | 18.4164 | 25.6799 |
9. | 40 | 1.00 | 5 | 0.151 | 0.065 | 16.4205 | 23.7417 |
10. | 80 | 0.25 | 1 | 0.373 | 0.120 | 8.5658 | 18.4164 |
11. | 80 | 0.25 | 3 | 0.232 | 0.105 | 12.6902 | 19.5762 |
12. | 80 | 0.25 | 5 | 0.286 | 0.113 | 10.8727 | 18.9384 |
13. | 80 | 0.50 | 1 | 0.285 | 0.104 | 10.9031 | 19.6593 |
14. | 80 | 0.50 | 3 | 0.202 | 0.081 | 13.8930 | 21.8303 |
15. | 80 | 0.50 | 5 | 0.236 | 0.102 | 12.5418 | 19.8280 |
16. | 80 | 1.00 | 1 | 0.215 | 0.091 | 13.3512 | 20.8192 |
17. | 80 | 1.00 | 3 | 0.168 | 0.065 | 15.4938 | 23.7417 |
18. | 80 | 1.00 | 5 | 0.195 | 0.077 | 14.1993 | 22.2702 |
19. | 120 | 0.25 | 1 | 0.488 | 0.130 | 6.2316 | 17.7211 |
20. | 120 | 0.25 | 3 | 0.435 | 0.118 | 7.2302 | 18.5624 |
21. | 120 | 0.25 | 5 | 0.472 | 0.125 | 6.5212 | 18.0618 |
22. | 120 | 0.50 | 1 | 0.338 | 0.115 | 9.4217 | 18.7860 |
23. | 120 | 0.50 | 3 | 0.297 | 0.103 | 10.5449 | 19.7433 |
24. | 120 | 0.50 | 5 | 0.385 | 0.117 | 8.2908 | 18.6363 |
25. | 120 | 1.00 | 1 | 0.245 | 0.097 | 12.2167 | 20.2646 |
26. | 120 | 1.00 | 3 | 0.198 | 0.073 | 14.0667 | 22.7335 |
27. | 120 | 1.00 | 5 | 0.307 | 0.103 | 10.2572 | 19.7433 |
WR | CoF | |||||
---|---|---|---|---|---|---|
Level | A | B | C | A | B | C |
1 | 14.668 | 10.097 | 10.707 | 22.17 | 19.21 | 19.65 |
2 | 12.501 | 12.231 | 13.838 | 20.56 | 20.63 | 21.96 |
3 | 9.420 | 14.262 | 12.045 | 19.36 | 22.26 | 20.50 |
Delta | 5.248 | 4.165 | 3.131 | 2.81 | 3.04 | 2.31 |
Rank | 1 | 2 | 3 | 2 | 1 | 3 |
Source | DF | Seq SS | Adj SS | Adj MS | F Value | p Value | % Age Contribution | ||
---|---|---|---|---|---|---|---|---|---|
WR | A | 2 | 125.191 | 125.191 | 62.5957 | 257.00 | 0.000 | 45.92 | (R-Sq) 99.29%; R-Sq(adj) 97.68% |
B | 2 | 78.088 | 78.088 | 39.0442 | 160.31 | 0.000 | 28.64 | ||
C | 2 | 44.425 | 44.425 | 22.2126 | 91.20 | 0.000 | 16.29 | ||
A*B | 4 | 4.304 | 4.304 | 1.0760 | 4.42 | 0.035 | 1.5 | ||
A*C | 4 | 16.311 | 16.311 | 4.0779 | 16.74 | 0.001 | 5.98 | ||
B*C | 4 | 2.367 | 2.367 | 0.5919 | 2.43 | 0.133 | 0.87 | ||
Residual Error | 8 | 1.948 | 1.948 | 0.2436 | 0.71 | ||||
Total | 26 | 272.636 | 100.00 | ||||||
CoF | A | 2 | 35.779 | 35.7789 | 17.8894 | 67.24 | 0.000 | 31.92 | (R-Sq) 98.10%; R-Sq (adj) 93.83% |
B | 2 | 41.718 | 41.7180 | 20.8590 | 78.40 | 0.000 | 37.22 | ||
C | 2 | 24.579 | 24.5786 | 12.2893 | 46.19 | 0.000 | 21.93 | ||
A*B | 4 | 0.823 | 0.8228 | 0.2057 | 0.77 | 0.572 | 0.73 | ||
A*C | 4 | 4.234 | 4.2335 | 1.0584 | 3.98 | 0.046 | 3.78 | ||
B*C | 4 | 2.826 | 2.8263 | 0.7066 | 2.66 | 0.112 | 2.52 | ||
Residual Error | 8 | 2.129 | 2.1285 | 0.2661 | 1.90 | ||||
Total | 26 | 112.087 | 100.00 |
No. | Normalized, WR | Normalized, CoF | GRC (WR) | GRC (CoF) | GRG | Rang |
---|---|---|---|---|---|---|
1. | 0.4429 | 0.3333 | 0.4730 | 0.4286 | 0.4555 | 21 |
2. | 0.8533 | 0.6154 | 0.7731 | 0.5652 | 0.6912 | 6 |
3. | 0.7717 | 0.4231 | 0.6866 | 0.4643 | 0.5990 | 11 |
4. | 0.6413 | 0.4103 | 0.5823 | 0.4588 | 0.5336 | 16 |
5. | 0.9429 | 0.8590 | 0.8976 | 0.7800 | 0.8512 | 2 |
6. | 0.8696 | 0.7564 | 0.7931 | 0.6724 | 0.7455 | 5 |
7. | 0.7799 | 0.5641 | 0.6943 | 0.5342 | 0.6312 | 10 |
8. | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1 |
9. | 0.9158 | 0.8333 | 0.8558 | 0.7500 | 0.8141 | 3 |
10. | 0.3125 | 0.1282 | 0.4211 | 0.3645 | 0.3988 | 23 |
11. | 0.6957 | 0.3205 | 0.6216 | 0.4239 | 0.5437 | 15 |
12. | 0.5489 | 0.2179 | 0.5257 | 0.3900 | 0.4722 | 19 |
13. | 0.5516 | 0.3333 | 0.5272 | 0.4286 | 0.4883 | 17 |
14. | 0.7772 | 0.6282 | 0.6917 | 0.5735 | 0.6451 | 9 |
15. | 0.6848 | 0.3590 | 0.6133 | 0.4382 | 0.5443 | 13 |
16. | 0.7418 | 0.5000 | 0.6595 | 0.5000 | 0.5966 | 12 |
17. | 0.8696 | 0.8333 | 0.7931 | 0.7500 | 0.7761 | 4 |
18. | 0.7962 | 0.6795 | 0.7104 | 0.6094 | 0.6706 | 8 |
19. | 0.0000 | 0.0000 | 0.3333 | 0.3333 | 0.3333 | 27 |
20. | 0.1440 | 0.1538 | 0.3687 | 0.3714 | 0.3698 | 25 |
21. | 0.0435 | 0.0641 | 0.3433 | 0.3482 | 0.3452 | 26 |
22. | 0.4076 | 0.1923 | 0.4577 | 0.3824 | 0.4280 | 22 |
23. | 0.5190 | 0.3462 | 0.5097 | 0.4333 | 0.4796 | 18 |
24. | 0.2799 | 0.1667 | 0.4098 | 0.3750 | 0.3961 | 24 |
25. | 0.6603 | 0.4231 | 0.5955 | 0.4643 | 0.5438 | 14 |
26. | 0.7880 | 0.7308 | 0.7023 | 0.6500 | 0.6817 | 7 |
27. | 0.4918 | 0.3462 | 0.4960 | 0.4333 | 0.4713 | 20 |
Source | DF | Seq SS | Adj SS | Adj MS | F Value | p Value | % Age Contribution | |
---|---|---|---|---|---|---|---|---|
A | 2 | 67.101 | 67.1011 | 33.5506 | 227.48 | 0.000 | 41.86 | (R-Sq) 99.26%; R-Sq(adj) 97.61% |
B | 2 | 52.062 | 52.0623 | 26.0312 | 176.50 | 0.000 | 32.48 | |
C | 2 | 29.542 | 29.5419 | 14.7709 | 100.15 | 0.000 | 18.43 | |
A*B | 4 | 1.339 | 1.3390 | 0.3348 | 2.27 | 0.151 | 0.84 | |
A*C | 4 | 8.176 | 8.1763 | 2.0441 | 13.86 | 0.001 | 5.10 | |
B*C | 4 | 0.904 | 0.9035 | 0.2259 | 1.53 | 0.281 | 0.56 | |
Residual Error | 8 | 1.180 | 1.1799 | 0.1475 | 0.74 | |||
Total | 26 | 160.304 | 100.00 |
Level | A | B | C |
---|---|---|---|
1 | −3.298 | −6.856 | −6.354 |
2 | −5.030 | −5.169 | −3.807 |
3 | −7.153 | −3.455 | −5.320 |
Delta | 3.855 | 3.401 | 2.547 |
Rank | 1 | 2 | 3 |
Decision Matrix, | Normalized Decision | |||||
---|---|---|---|---|---|---|
0.325 | 0.104 | 0.128 | 0.161 | 0.165 | 21 | |
0.174 | 0.082 | 0.240 | 0.204 | 0.504 | 6 | |
0.204 | 0.097 | 0.204 | 0.172 | 0.358 | 12 | |
0.252 | 0.098 | 0.165 | 0.171 | 0.268 | 16 | |
0.141 | 0.063 | 0.296 | 0.265 | 0.763 | 2 | |
0.168 | 0.071 | 0.248 | 0.236 | 0.593 | 5 | |
0.201 | 0.086 | 0.207 | 0.194 | 0.413 | 10 | |
0.12 | 0.052 | 0.347 | 0.322 | 1.000 | 1 | |
0.151 | 0.065 | 0.276 | 0.257 | 0.702 | 3 | |
0.373 | 0.12 | 0.112 | 0.139 | 0.081 | 24 | |
0.232 | 0.105 | 0.180 | 0.159 | 0.275 | 15 | |
0.286 | 0.113 | 0.146 | 0.148 | 0.175 | 20 | |
0.285 | 0.104 | 0.146 | 0.161 | 0.204 | 17 | |
0.202 | 0.081 | 0.206 | 0.206 | 0.437 | 9 | |
0.236 | 0.102 | 0.177 | 0.164 | 0.278 | 14 | |
0.215 | 0.091 | 0.194 | 0.184 | 0.360 | 11 | |
0.168 | 0.065 | 0.248 | 0.257 | 0.640 | 4 | |
0.195 | 0.077 | 0.214 | 0.217 | 0.477 | 8 | |
0.488 | 0.13 | 0.085 | 0.129 | 0.000 | 27 | |
0.435 | 0.118 | 0.096 | 0.142 | 0.052 | 25 | |
0.472 | 0.125 | 0.088 | 0.134 | 0.018 | 26 | |
0.338 | 0.115 | 0.123 | 0.145 | 0.120 | 22 | |
0.297 | 0.103 | 0.140 | 0.162 | 0.195 | 18 | |
0.385 | 0.117 | 0.108 | 0.143 | 0.082 | 23 | |
0.245 | 0.097 | 0.170 | 0.172 | 0.282 | 13 | |
0.198 | 0.073 | 0.210 | 0.229 | 0.496 | 7 | |
0.307 | 0.103 | 0.136 | 0.162 | 0.185 | 19 | |
PIS | 0.347 | 0.322 | ||||
NIS | 0.085 | 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajević, S.; Marković, A.; Milojević, S.; Ašonja, A.; Ivanović, L.; Stojanović, B. Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches. Lubricants 2024, 12, 171. https://doi.org/10.3390/lubricants12050171
Gajević S, Marković A, Milojević S, Ašonja A, Ivanović L, Stojanović B. Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches. Lubricants. 2024; 12(5):171. https://doi.org/10.3390/lubricants12050171
Chicago/Turabian StyleGajević, Sandra, Ana Marković, Saša Milojević, Aleksandar Ašonja, Lozica Ivanović, and Blaža Stojanović. 2024. "Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches" Lubricants 12, no. 5: 171. https://doi.org/10.3390/lubricants12050171
APA StyleGajević, S., Marković, A., Milojević, S., Ašonja, A., Ivanović, L., & Stojanović, B. (2024). Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches. Lubricants, 12(5), 171. https://doi.org/10.3390/lubricants12050171