Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Friction Experiments
2.3. Surface Characterization
3. Results
3.1. Material Characterization
3.2. Friction Experiments
4. Discussion
4.1. Influence of the Functionalized GO Additives
4.2. Influence of the Direction of Electric Stimulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Mang, T.; Bobzin, K.; Bartels, T. Industrial Tribology: Tribosystems; Friction, Wear and Surface Engineering, Lubrication; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Gatti, F.; Amann, T.; Kailer, A.; Baltes, N.; Rühe, J.; Gumbsch, P. Towards programmable friction: Control of lubrication with ionic liquid mixtures by automated electrical regulation. Sci. Rep. 2020, 10, 17634. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Feng, Y.; Zhang, L.; Sun, W.; Wang, D.; Sun, X.; Zhou, F.; Liu, W. Controlling the tribological behavior at the friction interface by regulating the triboelectrification. Nano Energy 2021, 87, 106183. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Q.; Cai, M.; Zhou, F. Interfacial friction control. Adv. Mater. Interfaces 2015, 2, 1400392. [Google Scholar] [CrossRef]
- Ge, X.; Chai, Z.; Shi, Q.; Li, J.; Tang, J.; Liu, Y.; Wang, W. Functionalized graphene-oxide nanosheets with amino groups fa-cilitate macroscale superlubricity. Friction 2023, 11, 187–200. [Google Scholar]
- Liu, Y.; Chen, L.; Liu, L.; Shi, P.; Sun, J.; Wang, Y.; Qian, L. Macroscopic ultra-low friction and wear enabled by carboxylated graphene with glycerol. Appl. Surf. Sci. 2023, 638, 158028. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, X.; Li, J. Graphene lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Ge, X.; Li, J.; Luo, R.; Zhang, C.; Luo, J. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol. ACS Appl. Mater. Interfaces 2018, 10, 40863–40870. [Google Scholar] [CrossRef]
- Yi, S.; Chen, X.; Li, J.; Liu, Y.; Ding, S.; Luo, J. Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon 2021, 176, 358–366. [Google Scholar] [CrossRef]
- Novikova, A.A.; Burlakova, V.E.; Varavka, V.N.; Uflyand, I.E.; Drogan, E.G.; Irkha, V.A. Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces. J. Mol. Liq. 2019, 284, 1–11. [Google Scholar] [CrossRef]
- Ge, X.; Chai, Z.; Shi, Q.; Liu, Y.; Wang, W. Graphene superlubricity: A review. Friction 2023, 11, 1953–1973. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.O. Electric fields line up graphene oxide. Nat. Mater. 2014, 13, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Myhro, K.; Zhao, Z.; Chen, Z.; Jang, W.; Jing, L.; Miao, F.; Zhang, H.; Dames, C.; Lau, C.N. In situ observation of electrostatic and thermal manipulation of suspended graphene membranes. Nano Lett. 2012, 12, 5470–5474. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Peng, Y.; Cao, X.; Zou, K. Atomic-scale friction characteristics of graphene under conductive afm with applied voltages. ACS Appl. Mater. Interfaces 2020, 12, 25503–25511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Dramatic effect of a transverse electric field on frictional properties of graphene. J. Phys. D Appl. Phys. 2019, 52, 385301. [Google Scholar] [CrossRef]
- Cho, H.; Lee, C.; Lee, S.; Kim, S. Effect of applied electrical potential and humidity on friction of Graphene-Based thin films. Appl. Surf. Sci. 2024, 672, 160802. [Google Scholar] [CrossRef]
- Greenwood, G.; Kim, J.M.; Nahid, S.M.; Lee, Y.; Hajarian, A.; Nam, S.; Espinosa-Marzal, R.M. Dynamically tuning friction at the graphene interface using the field effect. Nat. Commun. 2023, 14, 5801. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zhang, L.; Shi, Q.; Xing, Y.; Liu, Y.; Cao, Z.; Wang, W. Facilitating macroscopic superlubricity through electric stimu-lation with graphene oxide nanosheet additives for steel surface lubrication. Appl. Surf. Sci. 2024, 661, 160039. [Google Scholar] [CrossRef]
- Rajoba, S.J.; Sartale, S.D.; Jadhav, L.D. Investigating functional groups in GO and r-GO through spectroscopic tools and effect on optical properties. Optik 2018, 175, 312–318. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zhang, S.; Luo, J. Controllable superlubricity of glycerol solution via environment humidity. Langmuir 2013, 29, 11924–11930. [Google Scholar] [CrossRef] [PubMed]
- Joly-Pottuz, L.; Martin, J.M.; Bouchet, M.I.D.B.; Belin, M. Anomalous low friction under boundary lubrication of steel surfaces by polyols. Tribol. Lett. 2009, 34, 21–29. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Luo, J. Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 400–406. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, W.; Dong, G. Achieving macroscale liquid superlubricity using lubricant mixtures of glycerol and propanediol. Tribol. Lett. 2021, 69, 159. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, S.; Dong, G. Macroscale liquid superlubricity achieved with mixtures of fructose and diols. Wear 2021, 484–485, 204037. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Li, G.; Guo, Y.; Qi, H.; Zhang, G. Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon 2018, 136, 309–319. [Google Scholar] [CrossRef]
- Gao, X.; Chen, L.; Ji, L.; Liu, X.; Li, H.; Zhou, H.; Chen, J. Humidity-sensitive macroscopic lubrication behavior of an as-sprayed graphene oxide coating. Carbon 2018, 140, 124–130. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, srep45030. [Google Scholar] [CrossRef]
- Ederer, J.; Janoš, P.; Ecorchard, P.; Tolasz, J.; Štengl, V.; Beneš, H.; Perchacz, M.; Pop-Georgievski, O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 2017, 7, 12464–12473. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Chen, B.; Guo, S.; Li, J.; Li, C. One-step hydrothermal synthesis of reduced graphene oxide/zinc sulfide hybrids for enhanced tribological properties of epoxy coatings. Surf. Coat. Technol. 2017, 326, 87–95. [Google Scholar] [CrossRef]
- Song, Y.-L.; Huang, Q.; Jin, B.; Peng, R.-F. Preparation and characterization of HMX/NH2-GO composite with enhanced thermal safety and desensitization. Def. Technol. 2022, 18, 2074–2082. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, F.; Li, D.; Zhai, J.; Liu, P.; Zhang, W.; Li, Y. Amine functionalized graphene oxide stabilized pickering emulsion for highly efficient knoevenagel condensation in aqueous medium. Catal. Lett. 2020, 150, 1909–1922. [Google Scholar] [CrossRef]
- Mei, L.; Lin, C.; Cao, F.; Yang, D.; Jia, X.; Hu, S.; Miao, X.; Wu, P. Amino-functionalized graphene oxide for the capture and photothermal inhibition of bacteria. ACS Appl. Nano Mater. 2019, 2, 2902–2908. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Wang, Y.; Mao, J.; He, Y.; Luo, J. Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction. RSC Adv. 2017, 7, 1766–1770. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Li, P.F.; Xu, Y.; Cheng, X.-H. Chemisorption of thermal reduced graphene oxide nano-layer film on TNTZ surface and its tribological behavior. Surf. Coat. Technol. 2013, 232, 331–339. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Deng, M.; Luo, J. Investigation of the difference in liquid superlubricity between water-and oil-based lubri-cants. RSC Adv. 2015, 5, 63827–63833. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Lu, Y.; Hao, J.; Xiao, G.; Chen, L.; Wang, T.; Hu, Z. Preparation and properties of in situ amino-functionalized graphene ox-ide/polyimide composite films. Appl. Surf. Sci. 2017, 422, 710–719. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Yang, W.; Xiao, C.; Wei, M. Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymer 2018, 140, 56–72. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Luo, Z.; Yu, J.; Xu, Y.; Xi, H.; Cheng, G.; Yao, L.; Song, R.; Dearn, K.D. Surface characterization of steel/steel contact lubricated by PAO6 with novel black phosphorus nanocomposites. Friction 2021, 9, 723–733. [Google Scholar] [CrossRef]
- López, G.P.; Castner, D.G.; Ratner, B.D. XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 1991, 17, 267–272. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, X.; Li, W.; Wang, X. Hydroquinone bis (diphenyl phosphate) as an antiwear/extreme pressure additive in polyalkylene glycol for steel/steel contacts at elevated temperature. Ind. Eng. Chem. Res. 2013, 52, 7419–7424. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Dearn, K.D.; Zheng, X.; Yao, L.; Hu, X. Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 2015, 342–343, 297–309. [Google Scholar] [CrossRef]
- Ismail, N.A.; Bagheri, S. Highly oil-dispersed functionalized reduced graphene oxide nanosheets as lube oil friction modifier. Mater. Sci. Eng. B 2017, 222, 34–42. [Google Scholar] [CrossRef]
- Gali, O.; Tamtam, R.; Edrisy, A.; Riahi, A. The tribological evaluation of graphene oxide and tungsten disulfide spray coatings during elevated temperature sliding contact of aluminum-on-steel. Surf. Coat. Technol. 2019, 357, 604–618. [Google Scholar] [CrossRef]
- Kostiuk, D.; Bodik, M.; Siffalovic, P.; Jergel, M.; Halahovets, Y.; Hodas, M.; Pelletta, M.; Pelach, M.; Hulman, M.; Spitalsky, Z.; et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 391–394. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 2018, 434, 21–27. [Google Scholar] [CrossRef]
- Ge, X.; Wu, X.; Shi, Q.; Song, S.; Liu, Y.; Wang, W. Study on the Superlubricity Behavior of Ions under External Electric Fields at Steel Interfaces. Langmuir 2023, 39, 18757–18767. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shi, Q.; Ge, X. Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations. Lubricants 2024, 12, 455. https://doi.org/10.3390/lubricants12120455
Zhang L, Shi Q, Ge X. Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations. Lubricants. 2024; 12(12):455. https://doi.org/10.3390/lubricants12120455
Chicago/Turabian StyleZhang, Linghao, Qiuyu Shi, and Xiangyu Ge. 2024. "Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations" Lubricants 12, no. 12: 455. https://doi.org/10.3390/lubricants12120455
APA StyleZhang, L., Shi, Q., & Ge, X. (2024). Comparative Study of the Friction Behavior of Functionalized Graphene Oxide Additives Under Electric Stimulations. Lubricants, 12(12), 455. https://doi.org/10.3390/lubricants12120455