Synthesis and Evaluation of Bio-Lubricants from Renewable Raw Materials
Abstract
:1. Introduction
- Raw material availability
- Raw material efficiency (to produce a substantive amount of oil)
- Raw material cost
- Raw material quality (necessary for the production of a high-quality oil and therefore, later, a high-quality bio-lubricant) [14]
2. Materials and Methods
- Corn oil (CRNO)
- Cottonseed oil (CO)
- Sunflower oil (SUNO)
- Olive pomace oil (POMO)
2.1. First Stage of the Production Process
2.2. Second Stage of the Production Process
3. Results
Property | Unit | CRNTMPE | COTMPE | SUNTMPE | POMTMPE | HAVOOTMPE | UFOTMPE | Standard Method |
---|---|---|---|---|---|---|---|---|
Acid Value | mg KOH/g | 0.16 | 0.14 | 0.15 | 0.17 | 0.21 | 0.19 | EN 14104 [21] |
Water Content | mg/kg | 56 | 54 | 67 | 58 | 51 | 63 | EN ISO 12937 [20] |
Pour Point | °C | −12 | −12 | −11 | −9 | −10 | −10 | ASTM D97 [22] |
Cloud Point | °C | −8 | −7 | −6 | −2 | −3 | −4 | ASTM D2500 [42] |
Flash Point | °C | 235 | 230 | 237 | 264 | 265 | 254 | ASTM D92 [43] |
Viscosity (40 °C) | mm2/s | 33.02 | 36.92 | 39.24 | 43.67 | 46.77 | 41.263 | ASTM D7042 [18] |
Viscosity (100 °C) | 7.769 | 8.359 | 8.875 | 9.093 | 9.513 | 8.7206 | ||
Viscosity Index | 220 | 215 | 216 | 197 | 193 | 198 | ASTM D2270 [19] | |
Density (15 °C) | g/cm3 | 0.9156 | 0.9185 | 0.9228 | 0.9160 | 0.9151 | 0.9053 | ASTM D7042 [18] |
Copper Corrosion (3 h, 100 °C) | - | 1 | 1 | 1 | 1 | 1 | 1 | ASTM D130 [44] |
Oxidation Stability (RSSOT 140 °C, 700 kPa) | min | 26.15 | 24.98 | 26.63 | 37.38 | 42.29 | 35.71 | ASTM D7545 [23] |
Property | Units | SN-150 | SN-500 | Standard Method |
---|---|---|---|---|
Acid Value | mg KOH/g | 0.015 | 0.020 | EN 14104 [21] |
Water Content | mg/kg | 97 | 98 | EN ISO 12937 [20] |
Pour Point | °C | −15 | −9 | ASTM D97 [22] |
Cloud Point | °C | −9 | −3 | ASTM D2500 [42] |
Flash Point | °C | 202 | 226 | ASTM D92 [43] |
Viscosity (40 °C) | mm2/s | 34.03 | 63.57 | ASTM D7042 [18] |
Viscosity (100 °C) | mm2/s | 5.738 | 8.786 | |
Viscosity Index | 107 | 112 | ASTM D2270 [19] | |
Density (15 °C) | g/cm 3 | 0.8726 | 0.8736 | ASTM D7042 [18] |
Copper Corrosion (3 h, 100 °C) | - | 1 | 1 | ASTM D130 [44] |
Oxidation Stability (RSSOT 140 °C, 700 kPa) | min | 434.5 | 1461 | ASTM D7545 [23] |
Bio-Lubricant (50% v/v)—SN150 (50% v/v) | ||||||||
---|---|---|---|---|---|---|---|---|
Property | Units | CRNTMPE | COTMPE | SUNTMPE | POMTMPE | HAVOOTMPE | UFOTMPE | Standard Method |
Acid Value | mg KOH/g | 0.09 | 0.10 | 0.09 | 0.11 | 0.14 | 0.11 | EN 14104 [21] |
Water Content | mg/kg | 76 | 75 | 82 | 77 | 91 | 79 | EN ISO 12937 [20] |
Pour Point | °C | −13 | −15 | −13 | −11 | −11 | −12 | ASTM D97 [22] |
Cloud Point | °C | −8 | −8 | −7 | −5 | −6 | −7 | ASTM D2500 [42] |
Flash Point | °C | 222 | 217 | 223 | 233 | 234 | 228 | ASTM D92 [43] |
Viscosity (40 °C) | mm2/s | 33.49 | 35.39 | 36.55 | 38.56 | 41.30 | 37.83 | ASTM D7042 [18] |
Viscosity (100 °C) | 6.781 | 6.885 | 7.219 | 7.274 | 7.519 | 7.304 | ||
Viscosity Index | 167 | 158 | 166 | 156 | 151 | 155 | ASTM D2270 [19] | |
Density (15 °C) | g/cm3 | 0.8946 | 0.8961 | 0.8984 | 0.8948 | 0.8944 | 0.8903 | ASTM D7042 [18] |
Copper Corrosion (3 h, 100 °C) | - | 1 | 1 | 1 | 1 | 1 | 1 | ASTM D130 [44] |
Oxidative Stability (RSSOT 140 °C, 700 kPa) | min | 68.19 | 67.08 | 68.64 | 73.40 | 83.04 | 69.23 | ASTM D7545 [23] |
Bio-Lubricant (10% v/v)—SN 500 (90% v/v) | ||||||||
---|---|---|---|---|---|---|---|---|
Property | Units | CRNTMPE | COTMPE | SUNTMPE | POMTMPE | HAVOOTMPE | UFOTMPE | Standard Method |
Acid Value | mg KOH/g | 0.03 | 0.04 | 0.04 | 0.04 | 0.06 | 0.11 | EN 14104 [21] |
Water Content | mg/kg | 94 | 93 | 95 | 94 | 97 | 100 | EN ISO 12937 [20] |
Pour Point | °C | −9 | −9 | −8 | −7 | −8 | −8 | ASTM D97 [22] |
Cloud Point | °C | −4 | −3 | −3 | −3 | −3 | −3 | ASTM D2500 [42] |
Flash Point | °C | 230 | 229 | 230 | 232 | 232 | 231 | ASTM D92 [43] |
Viscosity (40 °C) | mm2/s | 54.73 | 56.57 | 57.41 | 58.78 | 60.52 | 57.89 | ASTM D7042 [18] |
Viscosity (100 °C) | 8.725 | 8.842 | 8.945 | 8.814 | 8.822 | 8.741 | ||
Viscosity Index | 135 | 131 | 1 33 | 124 | 121 | 126 | ASTM D2270 [19] | |
Density (15 °C) | g/cm3 | 0.8780 | 0.8783 | 0.8788 | 0.8780 | 0.8778 | 0.8790 | ASTM D7042 [18] |
Copper Corrosion (3 h, 100 °C) | - | 1 | 1 | 1 | 1 | 1 | 1 | ASTM D130 [44] |
Oxidative Stability (RSSOT 140 °C, 700 kPa) | min | 211.9 | 208.4 | 213.3 | 228.1 | 258.1 | 221.0 | ASTM D7545 [23] |
4. Discussion
5. Conclusions
- They show remarkable operational parameters, such as kinematic viscosities and low pour points, in the ranges of 33–47 cSt (40 °C)/7.70–9.51 cSt (100 °C) and −12 to −9 °C, respectively, which are similar or improved in comparison to those of the mineral oils, ensuring the good fluidity and pumpability of the bio-lubricant at high and low temperatures.
- They have an exceptionally higher viscosity index and flash point than the mineral oils, which indicates their significant thermal stability and capability of being utilized at a wide range of temperatures.
- They entirely present non-corrosive behavior compatibility, as was found by the measurement of the copper strip corrosion test.
- The highest value of oxidation stability was shown by the HAVO oil that had the greatest saturated/monounsaturated content, whereas the lowest was showed by the oil with the greatest degree of unsaturation, the cottonseed oil.
- The resistance to oxidation of any bio-lubricant was significantly lower than that of each of the mineral oils, restricting their utilization to special applications of non-recoverable or high-risk lubrication but of low heat load and oxidation potential or in mixtures with traditional mineral oils.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurre, S.K.; Yadav, J. A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants. Ind. Crops Prod. 2023, 193, 116122. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Berenguer-Murcia, Á.; Rocha-Martin, J.; Vieira, R.S.; Fernandez-Lafuente, R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol. Adv. 2023, 68, 108215. [Google Scholar] [CrossRef]
- Brêda, G.C.; Aguieiras, E.C.G.; Cipolatti, E.P.; Greco-Duarte, J.; de Collaço, A.C.A.; Costa Cavalcanti, E.D.; de Castro, A.M.; Freire, D.M.G. Current approaches to use oil crops by-products for biodiesel and biolubricant production: Focus on biocatalysis. Bioresour. Technol. Rep. 2022, 18, 101030. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar, J.M.; González, J.F. A Review on Biolubricants Based on Vegetable Oils through Transesterification and the Role of Catalysts: Current Status and Future Trends. Catalysts 2023, 13, 3091299. [Google Scholar] [CrossRef]
- Ijaz Malik, M.A.; Kalam, M.A.; Mujtaba, M.A.; Almomani, F. A review of recent advances in the synthesis of environmentally friendly, sustainable, and nontoxic bio-lubricants: Recommendations for the future implementations. Environ. Technol. Innov. 2023, 32, 103366. [Google Scholar] [CrossRef]
- Fava, F.; Gardossi, L.; Brigidi, P.; Morone, P.; Carosi, D.A.R.; Lenzi, A. The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country. New Biotechnol. 2021, 61, 124–136. [Google Scholar] [CrossRef]
- Narayana Sarma, R.; Vinu, R. Current Status and Future Prospects of Biolubricants: Properties and Applications. Lubricants 2022, 10, 70. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Plata, D.B.; Saboya, R.M.A.; de Luna, F.M.T.; Cavalcante, C.L.; Rodríguez-Castellón, E. An overview of the biolubricant production process: Challenges and future perspectives. Processes 2020, 8, 257. [Google Scholar] [CrossRef]
- Barbera, E.; Hirayama, K.; Maglinao, R.L.; Davis, R.W.; Kumar, S. Recent developments in synthesizing biolubricants—A review. Biomass Convers. Biorefinery 2024, 14, 2867–2887. [Google Scholar] [CrossRef]
- Salih, N.; Salimon, J. A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Res. Appl. Chem. 2021, 11, 13303–13327. [Google Scholar] [CrossRef]
- Encinar, J.M.; Nogales-Delgado, S.; Sánchez, N.; González, J.F. Biolubricants from rapeseed and castor oil transesterification by using titanium isopropoxide as a catalyst: Production and characterization. Catalysts 2020, 10, 366. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Quadir, M.A.; Thaher, M.; Annamalai, S.N.; Mahata, C.; Hawari, A.H.; al Jabri, H. A comparative physicochemical property assessment and techno-economic analysis of biolubricants produced using chemical modification and additive-based routes. Sci. Total Environ. 2022, 847, 157648. [Google Scholar] [CrossRef] [PubMed]
- Encinar, J.M.; Nogales-Delgado, S.; Pinilla, A. Biolubricant production through double transesterification: Reactor design for the implementation of a biorefinery based on rapeseed. Processes 2021, 9, 1224. [Google Scholar] [CrossRef]
- Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 2009, 33, 44–49. [Google Scholar] [CrossRef]
- Panchal, T.M.; Patel, A.; Chauhan, D.D.; Thomas, M.; Patel, J.V. A methodological review on bio-lubricants from vegetable oil based resources. Renew. Sustain. Energy Rev. 2017, 70, 65–70. [Google Scholar] [CrossRef]
- Abdulkhani, A.; Alizadeh, P.; Hedjazi, S.; Hamzeh, Y. Potential of Soya as a raw material for a whole crop biorefinery. Renew. Sustain. Energy Rev. 2017, 75, 1269–1280. [Google Scholar] [CrossRef]
- Moncada, B.J.; Aristizábal, M.V.; Cardona, A.C.A. Design strategies for sustainable biorefineries. Biochem. Eng. J. 2016, 116, 122–134. [Google Scholar] [CrossRef]
- ASTM D7042:2020; Standard Guide for Properties of Diesel Fuels. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D2270:2020; Standard Practice for Calculating Viscosity Index of Petroleum Oils. ASTM International: West Conshohocken, PA, USA, 2020.
- EN ISO 12937:2000; Petroleum Products—Determination of Water—Karl Fischer Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2000.
- EN 14104:2011; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Acid Value. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- ASTM D97:2020; Standard Test Method for Pour Point of Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D7545:2020; Standard Test Method for Determination of Low-Temperature Flow Properties of Diesel Fuels. ASTM International: West Conshohocken, PA, USA, 2020.
- Chai, M.; Tu, Q.; Lu, M.; Yang, Y.J. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 2014, 125, 106–113. [Google Scholar] [CrossRef]
- Berrios, M.; Siles, J.; Martin, M.; Martin, A. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 2007, 86, 2383–2388. [Google Scholar] [CrossRef]
- Canakci, M.; van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 2001, 44, 1429–1436. [Google Scholar] [CrossRef]
- Gerpen, J.; van Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G. Biodiesel Production Technology: August 2002–January 2004. National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, Contract No. DE-AC36-99-GO10337. 2004. Available online: https://www.nrel.gov/docs/fy04osti/36244.pdf (accessed on 12 September 2024).
- Ding, J.; Xia, Z.; Lu, J. Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g) for Biodiesel Production. Energies 2012, 5, 2683–2691. [Google Scholar] [CrossRef]
- Encinar, J.M.; Nogales, S.; González, J.F. Biodiesel and biolubricant production from different vegetable oils through transesterification. Eng. Rep. 2020, 2, e12190. [Google Scholar] [CrossRef]
- Dodos, G.S.; Anastopoulos, G.; Zannikos, F. Production of Biobased Lubricant Basestocks with Improved Performance; SAE Technical Paper 2012-01-1620; SAE: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Schuchardt, U.; Sercheli, R.; Vargas, R.M. Transesterification of Vegetable Oils: A Review. J. Braz. Chem. Soc. 1998, 9, 199–210. [Google Scholar] [CrossRef]
- Anastopoulos, G.; Dodos, G.S.; Kalligeros, S.; Zannikos, F. Methanolysis of sunflower oil and used frying oil using LiNO3/CaO as a solid base catalyst. Int. J. Ambient Energy 2013, 34, 73–82. [Google Scholar] [CrossRef]
- DIN EN 14214:2019; Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Biodiesel Engines and Heating Applications–Requirements and Test Methods (Includes Amendment: 2019). Deutsche Institut für Normung e.V. (DIN): Berlin, Germany, 2019.
- Gryglewicz, S.; Piechocki, W.; Gryglewicz, G. Preparation of polyol esters based on vegetable and animal fats. Bioresour. Technol. 2003, 87, 35–39. [Google Scholar] [CrossRef]
- Dodos, G.S.; Karonis, D.; Zannikos, F.; Lois, E. Renewable fuels and lubricants from Lunaria annua L. Ind. Crops Prod. 2015, 75, 43–50. [Google Scholar] [CrossRef]
- Dodos, G.S.; Anastopoulos, G.; Zannikos, F. Tribological Evaluation of Biobased Lubricant Basestocks from Cottonseed and Soybean Oils. SAE Int. J. Fuels Lubr. 2010, 3, 378–385. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Encinar, J.M.; González Cortés, Á. High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Ind. Crops Prod. 2021, 170, 113701. [Google Scholar] [CrossRef]
- EN ISO 12185:1996; Petroleum Products—Determination of Density—Oscillating U-tube Method. International Organization for Standardization (ISO): Geneva, Switzerland, 1996.
- EN ISO 3104:2017; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- EN 14103:2011; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Ester Content and Ester Distribution. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- Dodos, G.S.; Anastopoulos, G.; Zannikos, F.; Lois, E. Oxidation Stability Study of Biobased Lubricant Basestocks; SAE Technical Paper 2015-01-2046; SAE: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- ASTM D2500:2020; Standard Test Method for Cloud Point of Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D92:2020; Standard Test Method for Flash and Fire Points by Cleveland Open Cup. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D130:2020; Standard Test Method for Detection of Copper Corrosion from Petroleum Products by the Copper Strip Test. ASTM International: West Conshohocken, PA, USA, 2020.
- Encinar, J.M.; Nogales-Delgado, S.; Álvez-Medina, C.M. High oleic safflower biolubricant through double transesterification with methanol and pentaerythritol: Production, characterization, and antioxidant addition. Arab. J. Chem. 2022, 15, 103796. [Google Scholar] [CrossRef]
- Mobarak, H.M.; Niza Mohamad, E.; Masjuki, H.H.; Kalam, M.A.; al Mahmud, K.A.H.; Habibullah, M.; Ashraful, A.M. The prospects of biolubricants as alternatives in automotive applications. Renew. Sustain. Energy Rev. 2014, 33, 34–43. [Google Scholar] [CrossRef]
- Salimon, J.; Salih, N.; Yousif, E. Biolubricants: Raw materials, chemical modifications and environmental benefits. Eur. J. Lipid Sci. Technol. 2010, 112, 519–530. [Google Scholar] [CrossRef]
- Agarwal, M.; Maheshwari, K.; Pal, N. Synthesis of bio-based lubricants. In Multifunctional Bio-Based Lubricants: Synthesis, Properties and Applications; Institute of Physics Publishing: Bristol, UK, 2023; ISBN 978-0-7503-3435-8. [Google Scholar] [CrossRef]
- Salimon, J.; Abdullah, B.M.; Yusop, R.M.; Salih, N. Synthesis, reactivity and application studies for different biolubricants. Chem. Cent. J. 2014, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.M.; Derawi, D. Esterification and Evaluation of Palm Oil as Biolubricant Base Stock. Malays. J. Chem. 2019, 21, 28–35. [Google Scholar]
- Xie, Q.; Zhu, H.; Xu, P.; Xing, K.; Yu, S.; Liang, X.; Ji, W.; Nie, Y.; Ji, J. Transesterification of methyl oleate for sustainable production of biolubricant: Process optimization and kinetic study. Ind. Crops Prod. 2022, 182, 114879. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q.S. Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Pendbhaje, G.S.; Ali, M.; Bajaj, D. Development and Performance Evaluation of Vegetable Oils as Bio-Lubricant: A Review. Int. J. Eng. Trends Technol. 2024, 72, 160–173. [Google Scholar] [CrossRef]
- Fox, N.J.; Stachowiak, G.W. Vegetable oil-based lubricants—A review of oxidation. Tribol. Int. 2007, 40, 1035–1046. [Google Scholar] [CrossRef]
- Paschalidou, A.; Tsatiris, M.; Kitikidou, K. Energy crops for biofuel production or for food?—SWOT analysis (case study: Greece). Renew. Energy 2016, 93, 636–647. [Google Scholar] [CrossRef]
Property | Units | CRNO | CO | SUNO | POMO | HAVOO | UFO | Standard Method |
---|---|---|---|---|---|---|---|---|
Density (15 °C) | g/cm3 | 0.9062 | 0.9057 | 0.9067 | 0.9009 | 0.9156 | 0.9059 | ASTM D7042 [18] |
Viscosity (40 °C) | mm2/s | 32.86 | 34.28 | 32.53 | 39.61 | 37.99 | 38.11 | ASTM D7042 [18] |
Viscosity (100 °C) | mm2/s | 7.713 | 7.918 | 7.685 | 8.493 | 8.118 | 8.391 | |
Viscosity Index (VI) | - | 216 | 213 | 219 | 200 | 195 | 206 | ASTM D2270 [19] |
Water Content | mg/kg | 880.0 | 718.0 | 874.8 | 1054 | 763.7 | 907.8 | EN ISO 12937 [20] |
Acid Value (AV) | mg KOH/g | 4.13 | 0.40 | 3.48 | 0.72 | 10.76 | 5.72 | EN 14104 [21] |
Pour Point | °C | −9 | −10 | −10 | −7 | −8 | −9 | ASTM D97 [22] |
Oxidation Stability (RSSOT 140 °C, 700 kPa) | min | 9.64 | 9.27 | 11.08 | 15.91 | 21.55 | 10.63 | ASTM D7545 [23] |
Corn Oil (CRNO) | Sunflower Oil (SUNO) | High AV Olive Oil (HAVOO) | Used Frying Oil (UFO) | |
---|---|---|---|---|
AVIN | 4.13 | 3.48 | 10.76 | 5.72 |
AVFIN | 0.41 | 0.35 | 0.91 | 0.33 |
Yield | 90.07% | 89.94% | 91.54% | 94.23% |
Property | Units | CRME | COME | SUNME | POME | HAVOOME | UFOME | Standard Method |
---|---|---|---|---|---|---|---|---|
Density (15 °C) | g/cm3 | 0.8803 | 0.8839 | 0.8767 | 0.8796 | 0.8792 | 0.8788 | EN ISO 12185 [38] |
Viscosity (40 °C) | mm2/s | 4.413 | 4.277 | 4.323 | 4.693 | 4.575 | 4.412 | EN ISO 3104 [39] |
Water content | mg/kg | 250.4 | 286.7 | 104.0 | 239.8 | 235.2 | 104.0 | EN ISO 12937 [20] |
Acid value (AV) | mg KOH/g | 0.27 | 0.15 | 0.17 | 0.19 | 0.44 | 0.33 | EN 14104 [21] |
Ester content | m/m | 96.8% | 97.8% | 97.3% | 98.2% | 97.1% | 96.6% | EN 14103 [40] |
Linolenic acid ester content | m/m | 1.3% | 0.9% | 0.4% | 1.3% | 1.3% | 1.3% | EN 14104 [21] |
Fatty Acid | Molecular Formula | CRNO | CO | SUNO | POMO | HAVOO | UFO | |
---|---|---|---|---|---|---|---|---|
Caproic | CH3(CH2)4COOCH3 | C6:0 | 0.1% | 0.0% | 0.0% | 0.3% | 0.0% | 0.1% |
Caprylic | CH3(CH2)6COOCH3 | C8:0 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Capric | CH3(CH2)8COOCH3 | C10:0 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Lauric | CH3(CH2)10COOCH3 | C12:0 | 0.0% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% |
Myristic | CH3(CH2)12COOCH3 | C14:0 | 0.0% | 0.8% | 0.1% | 0.0% | 0.0% | 0.3% |
Myristoleic | CH3(CH2)3CH=CH(CH2)7CO2CH3 | C14:1 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 10.8% |
Palmitic | CH3(CH2)14COOCH3 | C16:0 | 12.0% | 22.2% | 6.8% | 13.1% | 11.6% | 0.9% |
Palmitoleic | CH3(CH2)5CH=CH(CH2)7CO2CH3 | C16:1 | 0.1% | 0.5% | 0.1% | 0.7% | 0.9% | 0.0% |
Margaric | CH3(CH2)15COOCH3 | C 17:0 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Stearic | CH3(CH2)16COOCH3 | C18:0 | 1.7% | 2.4% | 3.5% | 2.7% | 3.1% | 4.2% |
Oleic | CH3(CH2)7CH=CH(CH2)7CO2CH3 | C18:1 | 31.5% | 17.9% | 30.3% | 68.5% | 75.0% | 47.2% |
Linoleic | CH3(CH2)4CH=CHCH2CH=CH- (CH2)7CO2 CH3 | C18:2 | 52.8% | 54.8% | 57.6% | 12.4% | 7.8% | 33.9% |
Linolenic | CH3(CH2CH=CH)3(CH2)7CO2CH3 | C18:3 | 1.3% | 0.5% | 0.4% | 1.3% | 0.6% | 1.3% |
Arachidic | CH3(CH2)18COO CH3 | C20:0 | 0.0% | 0.3% | 0.2% | 0.0% | 0.0% | 0.1% |
Eicosenoic | CH3(CH2)7CH=CH(CH2)9CO2CH3 | C20:1 | 0.3% | 0.0% | 0.0% | 0.5% | 0.4% | 0.5% |
Behenic | C21H43COOCH3 | C22:0 | 0.1% | 0.2% | 0.7% | 0.2% | 0.1% | 0.5% |
Erucic | CH3(CH2)7CH=CH(CH2)11CO2CH3 | C22:1 | 0.0% | 0.0% | 0.3% | 0.0% | 0.0% | 0.1% |
Lignoceric | C23H47COO CH3 | C24:0 | 0.2% | 0.3% | 0.0% | 0.3% | 0.5% | 0.2% |
Property | Unit | 1.0% m/m | 1.5% m/m | 2.0% m/m | 2.5% m/m | 3.0% m/m | Standard Method |
---|---|---|---|---|---|---|---|
Pour Point | °C | −11 | −10 | −9 | −9 | −9 | ASTM D97 [22] |
Viscosity (40 °C) | mm2/s | 39.24 | 40.70 | 43.67 | 42.53 | 41.98 | ASTM D7042 [18] |
Viscosity (100 °C) | 8.493 | 8.713 | 9.106 | 8.911 | 8.864 | ||
Viscosity Index | - | 202 | 201 | 197 | 197 | 198 | ASTM D2270 [19] |
Oxidation Stability (RSSOT 140 °C, 700 kPa) | min | 28.47 | 31.55 | 37.38 | 35.41 | 32.11 | ASTM D7545 [23] |
Reaction Time | h | 11 | 9.0 | 8.0 | 7.5 | 7.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filon, D.; Anastopoulos, G.; Karonis, D. Synthesis and Evaluation of Bio-Lubricants from Renewable Raw Materials. Lubricants 2024, 12, 446. https://doi.org/10.3390/lubricants12120446
Filon D, Anastopoulos G, Karonis D. Synthesis and Evaluation of Bio-Lubricants from Renewable Raw Materials. Lubricants. 2024; 12(12):446. https://doi.org/10.3390/lubricants12120446
Chicago/Turabian StyleFilon, Dimosthenis, George Anastopoulos, and Dimitrios Karonis. 2024. "Synthesis and Evaluation of Bio-Lubricants from Renewable Raw Materials" Lubricants 12, no. 12: 446. https://doi.org/10.3390/lubricants12120446
APA StyleFilon, D., Anastopoulos, G., & Karonis, D. (2024). Synthesis and Evaluation of Bio-Lubricants from Renewable Raw Materials. Lubricants, 12(12), 446. https://doi.org/10.3390/lubricants12120446